vllm/tests/models/test_transformers.py

141 lines
4.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Test the functionality of the Transformers backend."""
from typing import Any, Optional, Union
import pytest
from vllm.platforms import current_platform
from ..conftest import HfRunner, VllmRunner
from ..core.block.e2e.test_correctness_sliding_window import prep_prompts
from ..utils import multi_gpu_test
from .utils import check_logprobs_close
def check_implementation(
runner_ref: type[Union[HfRunner, VllmRunner]],
runner_test: type[VllmRunner],
example_prompts: list[str],
model: str,
kwargs_ref: Optional[dict[str, Any]] = None,
kwargs_test: Optional[dict[str, Any]] = None,
**kwargs,
):
if kwargs_ref is None:
kwargs_ref = {}
if kwargs_test is None:
kwargs_test = {}
max_tokens = 32
num_logprobs = 5
args = (example_prompts, max_tokens, num_logprobs)
with runner_test(model, **kwargs_test, **kwargs) as model_test:
outputs_test = model_test.generate_greedy_logprobs(*args)
with runner_ref(model, **kwargs_ref) as model_ref:
if isinstance(model_ref, VllmRunner):
outputs_ref = model_ref.generate_greedy_logprobs(*args)
else:
outputs_ref = model_ref.generate_greedy_logprobs_limit(*args)
check_logprobs_close(
outputs_0_lst=outputs_ref,
outputs_1_lst=outputs_test,
name_0="ref",
name_1="test",
)
@pytest.mark.skipif(
current_platform.is_rocm(),
reason="Llama-3.2-1B-Instruct, Ilama-3.2-1B produce memory access fault.")
@pytest.mark.parametrize(
"model,model_impl",
[
("meta-llama/Llama-3.2-1B-Instruct", "transformers"),
("ArthurZ/Ilama-3.2-1B", "auto"), # CUSTOM CODE
]) # trust_remote_code=True by default
def test_models(
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
example_prompts: list[str],
model: str,
model_impl: str,
) -> None:
check_implementation(hf_runner,
vllm_runner,
example_prompts,
model,
model_impl=model_impl)
def test_hybrid_attention(vllm_runner: type[VllmRunner]) -> None:
prompts, _, _ = prep_prompts(4, (800, 801))
kwargs_ref = {"max_model_len": 8192, "enforce_eager": True}
kwargs_test = {"model_impl": "transformers", **kwargs_ref}
check_implementation(vllm_runner,
vllm_runner,
prompts,
model="hmellor/tiny-random-Gemma2ForCausalLM",
kwargs_ref=kwargs_ref,
kwargs_test=kwargs_test)
@multi_gpu_test(num_gpus=2)
def test_distributed(
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
example_prompts,
):
kwargs = {"model_impl": "transformers", "tensor_parallel_size": 2}
check_implementation(hf_runner,
vllm_runner,
example_prompts,
"meta-llama/Llama-3.2-1B-Instruct",
kwargs_test=kwargs)
@pytest.mark.skipif(
current_platform.is_rocm(),
reason="bitsandbytes quantization is currently not supported in rocm.")
@pytest.mark.parametrize("model, quantization_kwargs", [
(
"meta-llama/Llama-3.2-1B-Instruct",
{
"quantization": "bitsandbytes",
},
),
])
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("num_logprobs", [5])
def test_quantization(
vllm_runner: type[VllmRunner],
example_prompts: list[str],
model: str,
quantization_kwargs: dict[str, str],
max_tokens: int,
num_logprobs: int,
) -> None:
with vllm_runner(
model, model_impl="auto", enforce_eager=True,
**quantization_kwargs) as vllm_model: # type: ignore[arg-type]
vllm_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens=max_tokens, num_logprobs=num_logprobs)
with vllm_runner(
model,
model_impl="transformers",
enforce_eager=True,
**quantization_kwargs) as vllm_model: # type: ignore[arg-type]
transformers_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens=max_tokens, num_logprobs=num_logprobs)
check_logprobs_close(
outputs_0_lst=transformers_outputs,
outputs_1_lst=vllm_outputs,
name_0="transformers",
name_1="vllm",
)