vllm/benchmarks/kernels/benchmark_bitblas.py

243 lines
6.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from vllm.model_executor.layers.quantization.utils.bitblas_utils import (
MINIMUM_BITBLAS_VERSION,
)
try:
import bitblas
if bitblas.__version__ < MINIMUM_BITBLAS_VERSION:
raise ImportError(
"bitblas version is wrong. Please "
f"install bitblas>={MINIMUM_BITBLAS_VERSION}"
)
except ImportError as e:
bitblas_import_exception = e
raise ValueError(
"Trying to use the bitblas backend, but could not import"
f"with the following error: {bitblas_import_exception}. "
"Please install bitblas through the following command: "
f"`pip install bitblas>={MINIMUM_BITBLAS_VERSION}`"
) from bitblas_import_exception
from bitblas import Matmul, MatmulConfig, auto_detect_nvidia_target
from vllm.utils import FlexibleArgumentParser
parser = FlexibleArgumentParser(
description="Benchmark BitBLAS int4 on a specific target."
)
# Add arguments to the parser
parser.add_argument(
"--target",
type=str,
default=auto_detect_nvidia_target(),
help="Specify the target device for benchmarking.",
)
parser.add_argument(
"--group_size", type=int, default=None, help="Group size for grouped quantization."
)
parser.add_argument(
"--A_dtype",
type=str,
default="float16",
choices=["float16", "float32", "float64", "int32", "int8"],
help="Data type of activation A.",
)
parser.add_argument(
"--W_dtype",
type=str,
default="int4",
choices=[
"float16",
"float32",
"float64",
"int32",
"int8",
"int4",
"int2",
"int1",
"nf4",
"fp4_e2m1",
],
help="Data type of weight W.",
)
parser.add_argument(
"--accum_dtype",
type=str,
default="float16",
choices=["float16", "int32"],
help="Data type for accumulation.",
)
parser.add_argument(
"--out_dtype",
type=str,
default="float16",
choices=["float16", "float32", "int32", "int8"],
help="Data type for output.",
)
parser.add_argument(
"--layout",
type=str,
default="nt",
choices=["nt", "nn"],
help="Matrix layout, 'nt' for non-transpose A and transpose W.",
)
parser.add_argument(
"--with_bias", action="store_true", help="Include bias in the benchmark."
)
parser.add_argument(
"--with_scaling",
action="store_true",
help="Include scaling factor in the quantization.",
)
parser.add_argument(
"--with_zeros", action="store_true", help="Include zeros in the quantization."
)
parser.add_argument(
"--zeros_mode",
type=str,
default=None,
choices=["original", "rescale", "quantized"],
help="Specify the mode for calculating zeros.",
)
# Parse the arguments
args = parser.parse_args()
# Assign arguments to variables
target = args.target
A_dtype = args.A_dtype
W_dtype = args.W_dtype
accum_dtype = args.accum_dtype
out_dtype = args.out_dtype
layout = args.layout
with_bias = args.with_bias
group_size = args.group_size
with_scaling = args.with_scaling
with_zeros = args.with_zeros
zeros_mode = args.zeros_mode
# Define a list of shared arguments that repeat in every config
shared_args = [
A_dtype,
W_dtype,
out_dtype,
accum_dtype,
layout,
with_bias,
group_size,
with_scaling,
with_zeros,
zeros_mode,
]
# Define just the (M, K, N) shapes in a more compact list
shapes = [
# square test
(1, 16384, 16384),
# BLOOM-176B
(1, 43008, 14336),
(1, 14336, 14336),
(1, 57344, 14336),
(1, 14336, 57344),
# OPT-65B
(1, 9216, 9216),
(1, 36864, 9216),
(1, 9216, 36864),
(1, 22016, 8192),
# LLAMA-70B/65B
(1, 8192, 22016),
(1, 8192, 8192),
(1, 28672, 8192),
(1, 8192, 28672),
# square test
(16384, 16384, 16384),
# BLOOM-176B
(8192, 43008, 14336),
(8192, 14336, 14336),
(8192, 57344, 14336),
(8192, 14336, 57344),
# OPT-65B
(8192, 9216, 9216),
(8192, 36864, 9216),
(8192, 9216, 36864),
(8192, 22016, 8192),
# LLAMA-70B/65B
(8192, 8192, 22016),
(8192, 8192, 8192),
(8192, 28672, 8192),
(8192, 8192, 28672),
]
# Build test shapes with all the shared arguments
test_shapes = [(MatmulConfig, Matmul, (*shape, *shared_args)) for shape in shapes]
benchmark_sets = []
benchmark_sets.extend(test_shapes)
benchmark_results = {}
for config_class, operator, input_args in benchmark_sets:
config = config_class(*input_args)
matmul = operator(config, target=target, enable_tuning=True)
kernel_latency = matmul.profile_latency()
print("Time cost is: {:.3f} ms".format(kernel_latency))
profile_config = {
f"{operator.__name__}-{'-'.join([str(i) for i in input_args])}": {
"BitBLAS_top20_latency": kernel_latency,
}
}
benchmark_results.update(profile_config)
# Define headers for the table
headers = [
"PrimFunc",
"Input Arguments",
"BitBLAS Top20 Latency",
]
# Calculate column widths for pretty printing
col_widths = [0, 0, 0]
for config_key, values in benchmark_results.items():
args_split = config_key.split("-")
func_name = args_split[0]
input_args_str = "-".join(args_split[1:])
col_widths[0] = max(col_widths[0], len(func_name) + 2, len(headers[0]) + 2)
col_widths[1] = max(col_widths[1], len(input_args_str) + 2, len(headers[1]) + 2)
col_widths[2] = max(
col_widths[2],
len(f"{values['BitBLAS_top20_latency']:.3f} ms") + 2,
len(headers[2]) + 2,
)
# break only if you want to measure widths from a single example;
# otherwise, let it loop over all items.
# Print header
for i, header in enumerate(headers):
headers[i] = header.ljust(col_widths[i])
print("".join(headers))
print("-" * sum(col_widths))
# Print rows
for config_key, values in benchmark_results.items():
args_split = config_key.split("-")
func_name = args_split[0]
input_args_str = "-".join(args_split[1:])
row = [
func_name,
input_args_str,
f"{values['BitBLAS_top20_latency']:.3f} ms",
]
row_str = "".join(
[str(cell).ljust(col_widths[idx]) for idx, cell in enumerate(row)]
)
print(row_str)