mirror of https://github.com/vllm-project/vllm.git
267 lines
9.2 KiB
Python
267 lines
9.2 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import gc
|
|
import os
|
|
import pathlib
|
|
import subprocess
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from vllm import SamplingParams
|
|
from vllm.engine.arg_utils import EngineArgs
|
|
# yapf conflicts with isort for this docstring
|
|
# yapf: disable
|
|
from vllm.model_executor.model_loader.tensorizer import (TensorizerConfig,
|
|
TensorSerializer,
|
|
is_vllm_tensorized,
|
|
open_stream,
|
|
tensorize_vllm_model)
|
|
# yapf: enable
|
|
from vllm.utils import PlaceholderModule
|
|
|
|
from ..utils import VLLM_PATH
|
|
|
|
try:
|
|
from tensorizer import EncryptionParams
|
|
except ImportError:
|
|
tensorizer = PlaceholderModule("tensorizer") # type: ignore[assignment]
|
|
EncryptionParams = tensorizer.placeholder_attr("EncryptionParams")
|
|
|
|
EXAMPLES_PATH = VLLM_PATH / "examples"
|
|
|
|
prompts = [
|
|
"Hello, my name is",
|
|
"The president of the United States is",
|
|
"The capital of France is",
|
|
"The future of AI is",
|
|
]
|
|
# Create a sampling params object.
|
|
sampling_params = SamplingParams(temperature=0.8, top_p=0.95, seed=0)
|
|
|
|
model_ref = "facebook/opt-125m"
|
|
tensorize_model_for_testing_script = os.path.join(
|
|
os.path.dirname(__file__), "tensorize_vllm_model_for_testing.py")
|
|
|
|
|
|
def is_curl_installed():
|
|
try:
|
|
subprocess.check_call(['curl', '--version'])
|
|
return True
|
|
except (subprocess.CalledProcessError, FileNotFoundError):
|
|
return False
|
|
|
|
|
|
def write_keyfile(keyfile_path: str):
|
|
encryption_params = EncryptionParams.random()
|
|
pathlib.Path(keyfile_path).parent.mkdir(parents=True, exist_ok=True)
|
|
with open(keyfile_path, 'wb') as f:
|
|
f.write(encryption_params.key)
|
|
|
|
|
|
@pytest.mark.skipif(not is_curl_installed(), reason="cURL is not installed")
|
|
def test_can_deserialize_s3(vllm_runner):
|
|
model_ref = "EleutherAI/pythia-1.4b"
|
|
tensorized_path = f"s3://tensorized/{model_ref}/fp16/model.tensors"
|
|
|
|
with vllm_runner(model_ref,
|
|
load_format="tensorizer",
|
|
model_loader_extra_config=TensorizerConfig(
|
|
tensorizer_uri=tensorized_path,
|
|
num_readers=1,
|
|
s3_endpoint="object.ord1.coreweave.com",
|
|
)) as loaded_hf_model:
|
|
deserialized_outputs = loaded_hf_model.generate(
|
|
prompts, sampling_params)
|
|
# noqa: E501
|
|
|
|
assert deserialized_outputs
|
|
|
|
|
|
@pytest.mark.skipif(not is_curl_installed(), reason="cURL is not installed")
|
|
def test_deserialized_encrypted_vllm_model_has_same_outputs(
|
|
vllm_runner, tmp_path):
|
|
args = EngineArgs(model=model_ref)
|
|
with vllm_runner(model_ref) as vllm_model:
|
|
model_path = tmp_path / (model_ref + ".tensors")
|
|
key_path = tmp_path / (model_ref + ".key")
|
|
write_keyfile(key_path)
|
|
|
|
outputs = vllm_model.generate(prompts, sampling_params)
|
|
|
|
config_for_serializing = TensorizerConfig(tensorizer_uri=str(model_path),
|
|
encryption_keyfile=str(key_path))
|
|
|
|
tensorize_vllm_model(args, config_for_serializing)
|
|
|
|
config_for_deserializing = TensorizerConfig(
|
|
tensorizer_uri=str(model_path), encryption_keyfile=str(key_path))
|
|
|
|
with vllm_runner(model_ref,
|
|
load_format="tensorizer",
|
|
model_loader_extra_config=config_for_deserializing
|
|
) as loaded_vllm_model: # noqa: E501
|
|
|
|
deserialized_outputs = loaded_vllm_model.generate(
|
|
prompts, sampling_params)
|
|
# noqa: E501
|
|
|
|
assert outputs == deserialized_outputs
|
|
|
|
|
|
def test_deserialized_hf_model_has_same_outputs(hf_runner, vllm_runner,
|
|
tmp_path):
|
|
with hf_runner(model_ref) as hf_model:
|
|
model_path = tmp_path / (model_ref + ".tensors")
|
|
max_tokens = 50
|
|
outputs = hf_model.generate_greedy(prompts, max_tokens=max_tokens)
|
|
with open_stream(model_path, "wb+") as stream:
|
|
serializer = TensorSerializer(stream)
|
|
serializer.write_module(hf_model.model)
|
|
|
|
with vllm_runner(model_ref,
|
|
load_format="tensorizer",
|
|
model_loader_extra_config=TensorizerConfig(
|
|
tensorizer_uri=model_path,
|
|
num_readers=1,
|
|
)) as loaded_hf_model:
|
|
deserialized_outputs = loaded_hf_model.generate_greedy(
|
|
prompts, max_tokens=max_tokens)
|
|
|
|
assert outputs == deserialized_outputs
|
|
|
|
|
|
def test_load_without_tensorizer_load_format(vllm_runner, capfd):
|
|
model = None
|
|
try:
|
|
model = vllm_runner(
|
|
model_ref,
|
|
model_loader_extra_config=TensorizerConfig(tensorizer_uri="test"))
|
|
except RuntimeError:
|
|
out, err = capfd.readouterr()
|
|
combined_output = out + err
|
|
assert ("ValueError: Model loader extra config "
|
|
"is not supported for load "
|
|
"format LoadFormat.AUTO") in combined_output
|
|
finally:
|
|
del model
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
def test_raise_value_error_on_invalid_load_format(vllm_runner, capfd):
|
|
model = None
|
|
try:
|
|
model = vllm_runner(
|
|
model_ref,
|
|
load_format="safetensors",
|
|
model_loader_extra_config=TensorizerConfig(tensorizer_uri="test"))
|
|
except RuntimeError:
|
|
out, err = capfd.readouterr()
|
|
|
|
combined_output = out + err
|
|
assert ("ValueError: Model loader extra config is not supported "
|
|
"for load format LoadFormat.SAFETENSORS") in combined_output
|
|
finally:
|
|
del model
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Requires 2 GPUs")
|
|
def test_tensorizer_with_tp_path_without_template(vllm_runner, capfd):
|
|
try:
|
|
model_ref = "EleutherAI/pythia-1.4b"
|
|
tensorized_path = f"s3://tensorized/{model_ref}/fp16/model.tensors"
|
|
|
|
vllm_runner(
|
|
model_ref,
|
|
load_format="tensorizer",
|
|
model_loader_extra_config=TensorizerConfig(
|
|
tensorizer_uri=tensorized_path,
|
|
num_readers=1,
|
|
s3_endpoint="object.ord1.coreweave.com",
|
|
),
|
|
tensor_parallel_size=2,
|
|
disable_custom_all_reduce=True,
|
|
)
|
|
except RuntimeError:
|
|
out, err = capfd.readouterr()
|
|
combined_output = out + err
|
|
assert ("ValueError: For a sharded model, tensorizer_uri "
|
|
"should include a string format template like '%04d' "
|
|
"to be formatted with the rank "
|
|
"of the shard") in combined_output
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Requires 2 GPUs")
|
|
def test_deserialized_encrypted_vllm_model_with_tp_has_same_outputs(
|
|
vllm_runner, tmp_path):
|
|
model_ref = "EleutherAI/pythia-1.4b"
|
|
# record outputs from un-sharded un-tensorized model
|
|
with vllm_runner(
|
|
model_ref,
|
|
disable_custom_all_reduce=True,
|
|
enforce_eager=True,
|
|
) as base_model:
|
|
outputs = base_model.generate(prompts, sampling_params)
|
|
|
|
# load model with two shards and serialize with encryption
|
|
model_path = str(tmp_path / (model_ref + "-%02d.tensors"))
|
|
key_path = tmp_path / (model_ref + ".key")
|
|
|
|
tensorizer_config = TensorizerConfig(
|
|
tensorizer_uri=model_path,
|
|
encryption_keyfile=str(key_path),
|
|
)
|
|
|
|
tensorize_vllm_model(
|
|
engine_args=EngineArgs(
|
|
model=model_ref,
|
|
tensor_parallel_size=2,
|
|
disable_custom_all_reduce=True,
|
|
enforce_eager=True,
|
|
),
|
|
tensorizer_config=tensorizer_config,
|
|
)
|
|
assert os.path.isfile(model_path % 0), "Serialization subprocess failed"
|
|
assert os.path.isfile(model_path % 1), "Serialization subprocess failed"
|
|
|
|
with vllm_runner(
|
|
model_ref,
|
|
tensor_parallel_size=2,
|
|
load_format="tensorizer",
|
|
disable_custom_all_reduce=True,
|
|
enforce_eager=True,
|
|
model_loader_extra_config=tensorizer_config) as loaded_vllm_model:
|
|
deserialized_outputs = loaded_vllm_model.generate(
|
|
prompts, sampling_params)
|
|
|
|
assert outputs == deserialized_outputs
|
|
|
|
|
|
@pytest.mark.flaky(reruns=3)
|
|
def test_vllm_tensorized_model_has_same_outputs(vllm_runner, tmp_path):
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
model_ref = "facebook/opt-125m"
|
|
model_path = tmp_path / (model_ref + ".tensors")
|
|
config = TensorizerConfig(tensorizer_uri=str(model_path))
|
|
args = EngineArgs(model=model_ref, device="cuda")
|
|
|
|
with vllm_runner(model_ref) as vllm_model:
|
|
outputs = vllm_model.generate(prompts, sampling_params)
|
|
|
|
tensorize_vllm_model(args, config)
|
|
assert is_vllm_tensorized(config)
|
|
|
|
with vllm_runner(model_ref,
|
|
load_format="tensorizer",
|
|
model_loader_extra_config=config) as loaded_vllm_model:
|
|
deserialized_outputs = loaded_vllm_model.generate(
|
|
prompts, sampling_params)
|
|
# noqa: E501
|
|
|
|
assert outputs == deserialized_outputs
|