mirror of https://github.com/vllm-project/vllm.git
66 lines
1.9 KiB
Python
66 lines
1.9 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""
|
|
This example shows how to run offline inference with a speculative
|
|
decoding model on neuron.
|
|
"""
|
|
|
|
import os
|
|
|
|
from vllm import LLM, SamplingParams
|
|
|
|
# Sample prompts.
|
|
prompts = [
|
|
"Hello, I am a language model and I can help",
|
|
"The president of the United States is",
|
|
"The capital of France is",
|
|
]
|
|
|
|
|
|
def config_buckets():
|
|
"""Configure context length and token gen buckets."""
|
|
# creates XLA hlo graphs for all the context length buckets.
|
|
os.environ["NEURON_CONTEXT_LENGTH_BUCKETS"] = "128,512,1024,2048"
|
|
# creates XLA hlo graphs for all the token gen buckets.
|
|
os.environ["NEURON_TOKEN_GEN_BUCKETS"] = "128,512,1024,2048"
|
|
|
|
|
|
def initialize_model():
|
|
"""Create an LLM with speculative decoding."""
|
|
return LLM(
|
|
model="openlm-research/open_llama_7b",
|
|
speculative_config={
|
|
"model": "openlm-research/open_llama_3b",
|
|
"num_speculative_tokens": 4,
|
|
"max_model_len": 2048,
|
|
},
|
|
max_num_seqs=4,
|
|
max_model_len=2048,
|
|
block_size=2048,
|
|
use_v2_block_manager=True,
|
|
device="neuron",
|
|
tensor_parallel_size=32,
|
|
)
|
|
|
|
|
|
def process_requests(model: LLM, sampling_params: SamplingParams):
|
|
"""Generate texts from prompts and print them."""
|
|
outputs = model.generate(prompts, sampling_params)
|
|
for output in outputs:
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
|
|
|
|
def main():
|
|
"""Main function that sets up the model and processes prompts."""
|
|
config_buckets()
|
|
model = initialize_model()
|
|
# Create a sampling params object.
|
|
sampling_params = SamplingParams(max_tokens=100, top_k=1)
|
|
process_requests(model, sampling_params)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|