vllm/tests/v1/engine/test_fast_incdec_prefix_err.py

82 lines
3.0 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from transformers import AutoTokenizer
from vllm.sampling_params import SamplingParams
from vllm.v1.engine import EngineCoreRequest
from vllm.v1.engine.detokenizer import IncrementalDetokenizer
# ruff: noqa: E501
def test_fast_inc_detok_invalid_utf8_err_case():
"""
Test edge case where tokenizer can produce non-monotonic,
invalid UTF-8 output, which breaks the internal state of
tokenizers' DecodeStream.
See https://github.com/vllm-project/vllm/issues/17448.
Thanks to reproducer from @fpaupier:
https://gist.github.com/fpaupier/0ed1375bd7633c5be6c894b1c7ac1be3.
"""
tokenizer = AutoTokenizer.from_pretrained("google/gemma-3-1b-it")
# Create a test request
prompt_token_ids = [107, 4606, 236787, 107]
params = SamplingParams(skip_special_tokens=True)
request = EngineCoreRequest(
"test",
prompt_token_ids,
None,
None,
None,
params,
None,
None,
0.0,
None,
cache_salt=None,
data_parallel_rank=None,
)
detokenizer = IncrementalDetokenizer.from_new_request(tokenizer, request)
assert detokenizer.__class__.__name__ == "FastIncrementalDetokenizer", \
"Should use FastIncrementalDetokenizer by default"
# Process tokens incrementally
test_tokens = [
236840, 107, 138, 236782, 107, 140, 236775, 6265, 1083, 623, 121908,
147418, 827, 107, 140, 236775, 6265, 236779, 2084, 1083, 623, 203292,
827, 107, 140, 236775, 6265, 236779, 7777, 1083, 623, 121908, 147418,
569, 537, 236789, 65880, 569, 537, 236789, 62580, 853, 115693, 210118,
35178, 16055, 1270, 759, 215817, 4758, 1925, 1117, 827, 107, 140,
236775, 5654, 1083, 623, 110733, 46291, 827, 107, 140, 236775, 5654,
236779, 2084, 1083, 623, 136955, 56731, 827, 107, 140, 236775, 5654,
236779, 7777, 1083, 623, 194776, 2947, 496, 109811, 1608, 890, 215817,
4758, 1925, 1117, 2789, 432, 398, 602, 31118, 569, 124866, 134772, 509,
19478, 1640, 33779, 236743, 236770, 236819, 236825, 236771, 432, 398,
432, 237167, 827, 107, 140, 236775, 77984, 1083, 623, 2709, 236745,
2555, 513, 236789, 602, 31118, 569
]
output = ""
for i, token_id in enumerate(test_tokens):
detokenizer.update([token_id], False)
finished = i == len(test_tokens) - 1
output += detokenizer.get_next_output_text(finished, delta=True)
# fmt: off
assert output == r'''[
{
"source": "Résultats",
"source_type": "CONCEPT",
"source_description": "Résultats de l'analyse de l'impact des opérations israéliennes sur la frontière libanaise",
"target": "Israël",
"target_type": "ORGANIZATION",
"target_description": "Pays qui a obtenu à sa frontière libanaise « un niveau de calme inédit depuis les années 1960 »",
"relationship": "Obtention d'un niveau de'''