mirror of https://github.com/vllm-project/vllm.git
38 lines
1.2 KiB
Python
38 lines
1.2 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from vllm import LLM, SamplingParams
|
|
from vllm.config import KVTransferConfig
|
|
|
|
# Read prompts from output.txt
|
|
prompts = []
|
|
try:
|
|
with open("output.txt") as f:
|
|
for line in f:
|
|
prompts.append(line.strip())
|
|
print(f"Loaded {len(prompts)} prompts from output.txt")
|
|
except FileNotFoundError:
|
|
print("Error: output.txt file not found")
|
|
exit(-1)
|
|
|
|
sampling_params = SamplingParams(temperature=0, top_p=0.95, max_tokens=10)
|
|
|
|
llm = LLM(model="meta-llama/Llama-3.2-1B-Instruct",
|
|
enforce_eager=True,
|
|
gpu_memory_utilization=0.8,
|
|
max_num_batched_tokens=64,
|
|
max_num_seqs=16,
|
|
kv_transfer_config=KVTransferConfig(
|
|
kv_connector="SharedStorageConnector",
|
|
kv_role="kv_both",
|
|
kv_connector_extra_config={
|
|
"shared_storage_path": "local_storage"
|
|
})) #, max_model_len=2048, max_num_batched_tokens=2048)
|
|
|
|
# 1ST generation (prefill instance)
|
|
outputs = llm.generate(prompts, sampling_params)
|
|
|
|
for output in outputs:
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|