A high-throughput and memory-efficient inference and serving engine for LLMs
Go to file
SangBin Cho b51c1cc9d2
[2/N] Chunked prefill data update (#3538)
2024-03-28 10:06:01 -07:00
.buildkite feat(benchmarks): Add Prefix Caching Benchmark to Serving Benchmark (#3277) 2024-03-27 13:39:26 -07:00
.github [CI] Try introducing isort. (#3495) 2024-03-25 07:59:47 -07:00
benchmarks [2/N] Chunked prefill data update (#3538) 2024-03-28 10:06:01 -07:00
cmake [CI] Try introducing isort. (#3495) 2024-03-25 07:59:47 -07:00
csrc [Kernel] support non-zero cuda devices in punica kernels (#3636) 2024-03-27 00:37:42 +00:00
docs [Model] Add support for Qwen2MoeModel (#3346) 2024-03-28 15:19:59 +00:00
examples [Feature] Add vision language model support. (#3042) 2024-03-25 14:16:30 -07:00
rocm_patch [ROCm] Fix build problem resulted from previous commit related to FP8 kv-cache support (#2790) 2024-02-06 22:36:59 -08:00
tests [2/N] Chunked prefill data update (#3538) 2024-03-28 10:06:01 -07:00
vllm [2/N] Chunked prefill data update (#3538) 2024-03-28 10:06:01 -07:00
.dockerignore Build docker image with shared objects from "build" step (#2237) 2024-01-04 09:35:18 -08:00
.gitignore [FIX] Make `flash_attn` optional (#3269) 2024-03-08 10:52:20 -08:00
.readthedocs.yaml Add .readthedocs.yaml (#136) 2023-06-02 22:27:44 -07:00
.yapfignore [issue templates] add some issue templates (#3412) 2024-03-14 13:16:00 -07:00
CMakeLists.txt [Bugfix] Fix ROCm support in CMakeLists.txt (#3534) 2024-03-20 21:05:03 +00:00
CONTRIBUTING.md [Misc] PR templates (#3413) 2024-03-15 18:25:51 -07:00
Dockerfile [Core] remove cupy dependency (#3625) 2024-03-27 00:33:26 -07:00
Dockerfile.rocm [Core] remove cupy dependency (#3625) 2024-03-27 00:33:26 -07:00
LICENSE Add Apache-2.0 license (#102) 2023-05-14 18:05:19 -07:00
MANIFEST.in Cmake based build system (#2830) 2024-03-18 15:38:33 -07:00
README.md [Model] Add support for Qwen2MoeModel (#3346) 2024-03-28 15:19:59 +00:00
collect_env.py [CI] Try introducing isort. (#3495) 2024-03-25 07:59:47 -07:00
format.sh [CI] Try introducing isort. (#3495) 2024-03-25 07:59:47 -07:00
patch_xformers.rocm.sh [ROCm] Upgrade xformers version for ROCm & update doc (#2079) 2023-12-13 00:56:05 -08:00
pyproject.toml feat(benchmarks): Add Prefix Caching Benchmark to Serving Benchmark (#3277) 2024-03-27 13:39:26 -07:00
requirements-build.txt Cmake based build system (#2830) 2024-03-18 15:38:33 -07:00
requirements-dev.txt [Feature] Add vision language model support. (#3042) 2024-03-25 14:16:30 -07:00
requirements-neuron.txt Restrict prometheus_client >= 0.18.0 to prevent errors when importing pkgs (#3070) 2024-02-28 05:38:26 +00:00
requirements-rocm.txt [Misc] Bump transformers version (#3592) 2024-03-24 06:32:45 -07:00
requirements.txt [Model] Add support for DBRX (#3660) 2024-03-27 13:01:46 -07:00
setup.py [CI/Build] update default number of jobs and nvcc threads to avoid overloading the system (#3675) 2024-03-28 00:18:54 -04:00

README.md

vLLM

Easy, fast, and cheap LLM serving for everyone

| Documentation | Blog | Paper | Discord |


The Third vLLM Bay Area Meetup (April 2nd 6pm-8:30pm PT)

We are thrilled to announce our third vLLM Meetup! The vLLM team will share recent updates and roadmap. We will also have vLLM collaborators from Roblox coming up to the stage to discuss their experience in deploying LLMs with vLLM. Please register here and join us!


Latest News 🔥

  • [2024/01] We hosted the second vLLM meetup in SF! Please find the meetup slides here.
  • [2024/01] Added ROCm 6.0 support to vLLM.
  • [2023/12] Added ROCm 5.7 support to vLLM.
  • [2023/10] We hosted the first vLLM meetup in SF! Please find the meetup slides here.
  • [2023/09] We created our Discord server! Join us to discuss vLLM and LLM serving! We will also post the latest announcements and updates there.
  • [2023/09] We released our PagedAttention paper on arXiv!
  • [2023/08] We would like to express our sincere gratitude to Andreessen Horowitz (a16z) for providing a generous grant to support the open-source development and research of vLLM.
  • [2023/07] Added support for LLaMA-2! You can run and serve 7B/13B/70B LLaMA-2s on vLLM with a single command!
  • [2023/06] Serving vLLM On any Cloud with SkyPilot. Check out a 1-click example to start the vLLM demo, and the blog post for the story behind vLLM development on the clouds.
  • [2023/06] We officially released vLLM! FastChat-vLLM integration has powered LMSYS Vicuna and Chatbot Arena since mid-April. Check out our blog post.

About

vLLM is a fast and easy-to-use library for LLM inference and serving.

vLLM is fast with:

  • State-of-the-art serving throughput
  • Efficient management of attention key and value memory with PagedAttention
  • Continuous batching of incoming requests
  • Fast model execution with CUDA/HIP graph
  • Quantization: GPTQ, AWQ, SqueezeLLM, FP8 KV Cache
  • Optimized CUDA kernels

vLLM is flexible and easy to use with:

  • Seamless integration with popular Hugging Face models
  • High-throughput serving with various decoding algorithms, including parallel sampling, beam search, and more
  • Tensor parallelism support for distributed inference
  • Streaming outputs
  • OpenAI-compatible API server
  • Support NVIDIA GPUs and AMD GPUs
  • (Experimental) Prefix caching support
  • (Experimental) Multi-lora support

vLLM seamlessly supports many Hugging Face models, including the following architectures:

  • Aquila & Aquila2 (BAAI/AquilaChat2-7B, BAAI/AquilaChat2-34B, BAAI/Aquila-7B, BAAI/AquilaChat-7B, etc.)
  • Baichuan & Baichuan2 (baichuan-inc/Baichuan2-13B-Chat, baichuan-inc/Baichuan-7B, etc.)
  • BLOOM (bigscience/bloom, bigscience/bloomz, etc.)
  • ChatGLM (THUDM/chatglm2-6b, THUDM/chatglm3-6b, etc.)
  • Command-R (CohereForAI/c4ai-command-r-v01, etc.)
  • DBRX (databricks/dbrx-base, databricks/dbrx-instruct etc.)
  • DeciLM (Deci/DeciLM-7B, Deci/DeciLM-7B-instruct, etc.)
  • Falcon (tiiuae/falcon-7b, tiiuae/falcon-40b, tiiuae/falcon-rw-7b, etc.)
  • Gemma (google/gemma-2b, google/gemma-7b, etc.)
  • GPT-2 (gpt2, gpt2-xl, etc.)
  • GPT BigCode (bigcode/starcoder, bigcode/gpt_bigcode-santacoder, etc.)
  • GPT-J (EleutherAI/gpt-j-6b, nomic-ai/gpt4all-j, etc.)
  • GPT-NeoX (EleutherAI/gpt-neox-20b, databricks/dolly-v2-12b, stabilityai/stablelm-tuned-alpha-7b, etc.)
  • InternLM (internlm/internlm-7b, internlm/internlm-chat-7b, etc.)
  • InternLM2 (internlm/internlm2-7b, internlm/internlm2-chat-7b, etc.)
  • Jais (core42/jais-13b, core42/jais-13b-chat, core42/jais-30b-v3, core42/jais-30b-chat-v3, etc.)
  • LLaMA & LLaMA-2 (meta-llama/Llama-2-70b-hf, lmsys/vicuna-13b-v1.3, young-geng/koala, openlm-research/open_llama_13b, etc.)
  • Mistral (mistralai/Mistral-7B-v0.1, mistralai/Mistral-7B-Instruct-v0.1, etc.)
  • Mixtral (mistralai/Mixtral-8x7B-v0.1, mistralai/Mixtral-8x7B-Instruct-v0.1, etc.)
  • MPT (mosaicml/mpt-7b, mosaicml/mpt-30b, etc.)
  • OLMo (allenai/OLMo-1B, allenai/OLMo-7B, etc.)
  • OPT (facebook/opt-66b, facebook/opt-iml-max-30b, etc.)
  • Orion (OrionStarAI/Orion-14B-Base, OrionStarAI/Orion-14B-Chat, etc.)
  • Phi (microsoft/phi-1_5, microsoft/phi-2, etc.)
  • Qwen (Qwen/Qwen-7B, Qwen/Qwen-7B-Chat, etc.)
  • Qwen2 (Qwen/Qwen2-7B-beta, Qwen/Qwen-7B-Chat-beta, etc.)
  • Qwen2MoE (Qwen/Qwen1.5-MoE-A2.7B, Qwen/Qwen1.5-MoE-A2.7B-Chat, etc.)
  • StableLM(stabilityai/stablelm-3b-4e1t, stabilityai/stablelm-base-alpha-7b-v2, etc.)
  • Starcoder2(bigcode/starcoder2-3b, bigcode/starcoder2-7b, bigcode/starcoder2-15b, etc.)
  • Xverse (xverse/XVERSE-7B-Chat, xverse/XVERSE-13B-Chat, xverse/XVERSE-65B-Chat, etc.)
  • Yi (01-ai/Yi-6B, 01-ai/Yi-34B, etc.)

Install vLLM with pip or from source:

pip install vllm

Getting Started

Visit our documentation to get started.

Contributing

We welcome and value any contributions and collaborations. Please check out CONTRIBUTING.md for how to get involved.

Citation

If you use vLLM for your research, please cite our paper:

@inproceedings{kwon2023efficient,
  title={Efficient Memory Management for Large Language Model Serving with PagedAttention},
  author={Woosuk Kwon and Zhuohan Li and Siyuan Zhuang and Ying Sheng and Lianmin Zheng and Cody Hao Yu and Joseph E. Gonzalez and Hao Zhang and Ion Stoica},
  booktitle={Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles},
  year={2023}
}