Updated client-go to 1.11.

Signed-off-by: Da K. Ma <klaus1982.cn@gmail.com>
This commit is contained in:
Da K. Ma 2018-07-07 11:46:18 +08:00
parent ddd00116f3
commit 6eadc3405f
1000 changed files with 217472 additions and 14264 deletions

1100
Godeps/Godeps.json generated

File diff suppressed because it is too large Load Diff

View File

@ -214,12 +214,8 @@ func (in *TaskSpec) DeepCopyInto(out *TaskSpec) {
*out = *in
if in.Selector != nil {
in, out := &in.Selector, &out.Selector
if *in == nil {
*out = nil
} else {
*out = new(v1.LabelSelector)
(*in).DeepCopyInto(*out)
}
*out = new(v1.LabelSelector)
(*in).DeepCopyInto(*out)
}
in.Template.DeepCopyInto(&out.Template)
return
@ -303,12 +299,8 @@ func (in *XQueueJobResource) DeepCopyInto(out *XQueueJobResource) {
in.ObjectMeta.DeepCopyInto(&out.ObjectMeta)
if in.MinAvailable != nil {
in, out := &in.MinAvailable, &out.MinAvailable
if *in == nil {
*out = nil
} else {
*out = new(int32)
**out = **in
}
*out = new(int32)
**out = **in
}
in.Template.DeepCopyInto(&out.Template)
return
@ -373,12 +365,8 @@ func (in *XQueueJobSpec) DeepCopyInto(out *XQueueJobSpec) {
in.AggrResources.DeepCopyInto(&out.AggrResources)
if in.Selector != nil {
in, out := &in.Selector, &out.Selector
if *in == nil {
*out = nil
} else {
*out = new(v1.LabelSelector)
(*in).DeepCopyInto(*out)
}
*out = new(v1.LabelSelector)
(*in).DeepCopyInto(*out)
}
in.SchedSpec.DeepCopyInto(&out.SchedSpec)
return

View File

@ -1,43 +0,0 @@
# Go support for Protocol Buffers - Google's data interchange format
#
# Copyright 2010 The Go Authors. All rights reserved.
# https://github.com/golang/protobuf
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
# * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
install:
go install
test: install generate-test-pbs
go test
generate-test-pbs:
make install
make -C testdata
protoc --go_out=Mtestdata/test.proto=github.com/golang/protobuf/proto/testdata,Mgoogle/protobuf/any.proto=github.com/golang/protobuf/ptypes/any:. proto3_proto/proto3.proto
make

View File

@ -35,22 +35,39 @@
package proto
import (
"fmt"
"log"
"reflect"
"strings"
)
// Clone returns a deep copy of a protocol buffer.
func Clone(pb Message) Message {
in := reflect.ValueOf(pb)
func Clone(src Message) Message {
in := reflect.ValueOf(src)
if in.IsNil() {
return pb
return src
}
out := reflect.New(in.Type().Elem())
// out is empty so a merge is a deep copy.
mergeStruct(out.Elem(), in.Elem())
return out.Interface().(Message)
dst := out.Interface().(Message)
Merge(dst, src)
return dst
}
// Merger is the interface representing objects that can merge messages of the same type.
type Merger interface {
// Merge merges src into this message.
// Required and optional fields that are set in src will be set to that value in dst.
// Elements of repeated fields will be appended.
//
// Merge may panic if called with a different argument type than the receiver.
Merge(src Message)
}
// generatedMerger is the custom merge method that generated protos will have.
// We must add this method since a generate Merge method will conflict with
// many existing protos that have a Merge data field already defined.
type generatedMerger interface {
XXX_Merge(src Message)
}
// Merge merges src into dst.
@ -58,17 +75,24 @@ func Clone(pb Message) Message {
// Elements of repeated fields will be appended.
// Merge panics if src and dst are not the same type, or if dst is nil.
func Merge(dst, src Message) {
if m, ok := dst.(Merger); ok {
m.Merge(src)
return
}
in := reflect.ValueOf(src)
out := reflect.ValueOf(dst)
if out.IsNil() {
panic("proto: nil destination")
}
if in.Type() != out.Type() {
// Explicit test prior to mergeStruct so that mistyped nils will fail
panic("proto: type mismatch")
panic(fmt.Sprintf("proto.Merge(%T, %T) type mismatch", dst, src))
}
if in.IsNil() {
// Merging nil into non-nil is a quiet no-op
return // Merge from nil src is a noop
}
if m, ok := dst.(generatedMerger); ok {
m.XXX_Merge(src)
return
}
mergeStruct(out.Elem(), in.Elem())
@ -84,7 +108,7 @@ func mergeStruct(out, in reflect.Value) {
mergeAny(out.Field(i), in.Field(i), false, sprop.Prop[i])
}
if emIn, ok := extendable(in.Addr().Interface()); ok {
if emIn, err := extendable(in.Addr().Interface()); err == nil {
emOut, _ := extendable(out.Addr().Interface())
mIn, muIn := emIn.extensionsRead()
if mIn != nil {

View File

@ -39,8 +39,6 @@ import (
"errors"
"fmt"
"io"
"os"
"reflect"
)
// errOverflow is returned when an integer is too large to be represented.
@ -50,10 +48,6 @@ var errOverflow = errors.New("proto: integer overflow")
// wire type is encountered. It does not get returned to user code.
var ErrInternalBadWireType = errors.New("proto: internal error: bad wiretype for oneof")
// The fundamental decoders that interpret bytes on the wire.
// Those that take integer types all return uint64 and are
// therefore of type valueDecoder.
// DecodeVarint reads a varint-encoded integer from the slice.
// It returns the integer and the number of bytes consumed, or
// zero if there is not enough.
@ -267,9 +261,6 @@ func (p *Buffer) DecodeZigzag32() (x uint64, err error) {
return
}
// These are not ValueDecoders: they produce an array of bytes or a string.
// bytes, embedded messages
// DecodeRawBytes reads a count-delimited byte buffer from the Buffer.
// This is the format used for the bytes protocol buffer
// type and for embedded messages.
@ -311,81 +302,29 @@ func (p *Buffer) DecodeStringBytes() (s string, err error) {
return string(buf), nil
}
// Skip the next item in the buffer. Its wire type is decoded and presented as an argument.
// If the protocol buffer has extensions, and the field matches, add it as an extension.
// Otherwise, if the XXX_unrecognized field exists, append the skipped data there.
func (o *Buffer) skipAndSave(t reflect.Type, tag, wire int, base structPointer, unrecField field) error {
oi := o.index
err := o.skip(t, tag, wire)
if err != nil {
return err
}
if !unrecField.IsValid() {
return nil
}
ptr := structPointer_Bytes(base, unrecField)
// Add the skipped field to struct field
obuf := o.buf
o.buf = *ptr
o.EncodeVarint(uint64(tag<<3 | wire))
*ptr = append(o.buf, obuf[oi:o.index]...)
o.buf = obuf
return nil
}
// Skip the next item in the buffer. Its wire type is decoded and presented as an argument.
func (o *Buffer) skip(t reflect.Type, tag, wire int) error {
var u uint64
var err error
switch wire {
case WireVarint:
_, err = o.DecodeVarint()
case WireFixed64:
_, err = o.DecodeFixed64()
case WireBytes:
_, err = o.DecodeRawBytes(false)
case WireFixed32:
_, err = o.DecodeFixed32()
case WireStartGroup:
for {
u, err = o.DecodeVarint()
if err != nil {
break
}
fwire := int(u & 0x7)
if fwire == WireEndGroup {
break
}
ftag := int(u >> 3)
err = o.skip(t, ftag, fwire)
if err != nil {
break
}
}
default:
err = fmt.Errorf("proto: can't skip unknown wire type %d for %s", wire, t)
}
return err
}
// Unmarshaler is the interface representing objects that can
// unmarshal themselves. The method should reset the receiver before
// decoding starts. The argument points to data that may be
// unmarshal themselves. The argument points to data that may be
// overwritten, so implementations should not keep references to the
// buffer.
// Unmarshal implementations should not clear the receiver.
// Any unmarshaled data should be merged into the receiver.
// Callers of Unmarshal that do not want to retain existing data
// should Reset the receiver before calling Unmarshal.
type Unmarshaler interface {
Unmarshal([]byte) error
}
// newUnmarshaler is the interface representing objects that can
// unmarshal themselves. The semantics are identical to Unmarshaler.
//
// This exists to support protoc-gen-go generated messages.
// The proto package will stop type-asserting to this interface in the future.
//
// DO NOT DEPEND ON THIS.
type newUnmarshaler interface {
XXX_Unmarshal([]byte) error
}
// Unmarshal parses the protocol buffer representation in buf and places the
// decoded result in pb. If the struct underlying pb does not match
// the data in buf, the results can be unpredictable.
@ -395,7 +334,13 @@ type Unmarshaler interface {
// to preserve and append to existing data.
func Unmarshal(buf []byte, pb Message) error {
pb.Reset()
return UnmarshalMerge(buf, pb)
if u, ok := pb.(newUnmarshaler); ok {
return u.XXX_Unmarshal(buf)
}
if u, ok := pb.(Unmarshaler); ok {
return u.Unmarshal(buf)
}
return NewBuffer(buf).Unmarshal(pb)
}
// UnmarshalMerge parses the protocol buffer representation in buf and
@ -405,8 +350,16 @@ func Unmarshal(buf []byte, pb Message) error {
// UnmarshalMerge merges into existing data in pb.
// Most code should use Unmarshal instead.
func UnmarshalMerge(buf []byte, pb Message) error {
// If the object can unmarshal itself, let it.
if u, ok := pb.(newUnmarshaler); ok {
return u.XXX_Unmarshal(buf)
}
if u, ok := pb.(Unmarshaler); ok {
// NOTE: The history of proto have unfortunately been inconsistent
// whether Unmarshaler should or should not implicitly clear itself.
// Some implementations do, most do not.
// Thus, calling this here may or may not do what people want.
//
// See https://github.com/golang/protobuf/issues/424
return u.Unmarshal(buf)
}
return NewBuffer(buf).Unmarshal(pb)
@ -422,12 +375,17 @@ func (p *Buffer) DecodeMessage(pb Message) error {
}
// DecodeGroup reads a tag-delimited group from the Buffer.
// StartGroup tag is already consumed. This function consumes
// EndGroup tag.
func (p *Buffer) DecodeGroup(pb Message) error {
typ, base, err := getbase(pb)
if err != nil {
return err
b := p.buf[p.index:]
x, y := findEndGroup(b)
if x < 0 {
return io.ErrUnexpectedEOF
}
return p.unmarshalType(typ.Elem(), GetProperties(typ.Elem()), true, base)
err := Unmarshal(b[:x], pb)
p.index += y
return err
}
// Unmarshal parses the protocol buffer representation in the
@ -438,533 +396,33 @@ func (p *Buffer) DecodeGroup(pb Message) error {
// Unlike proto.Unmarshal, this does not reset pb before starting to unmarshal.
func (p *Buffer) Unmarshal(pb Message) error {
// If the object can unmarshal itself, let it.
if u, ok := pb.(newUnmarshaler); ok {
err := u.XXX_Unmarshal(p.buf[p.index:])
p.index = len(p.buf)
return err
}
if u, ok := pb.(Unmarshaler); ok {
// NOTE: The history of proto have unfortunately been inconsistent
// whether Unmarshaler should or should not implicitly clear itself.
// Some implementations do, most do not.
// Thus, calling this here may or may not do what people want.
//
// See https://github.com/golang/protobuf/issues/424
err := u.Unmarshal(p.buf[p.index:])
p.index = len(p.buf)
return err
}
typ, base, err := getbase(pb)
if err != nil {
return err
}
err = p.unmarshalType(typ.Elem(), GetProperties(typ.Elem()), false, base)
if collectStats {
stats.Decode++
}
return err
}
// unmarshalType does the work of unmarshaling a structure.
func (o *Buffer) unmarshalType(st reflect.Type, prop *StructProperties, is_group bool, base structPointer) error {
var state errorState
required, reqFields := prop.reqCount, uint64(0)
var err error
for err == nil && o.index < len(o.buf) {
oi := o.index
var u uint64
u, err = o.DecodeVarint()
if err != nil {
break
}
wire := int(u & 0x7)
if wire == WireEndGroup {
if is_group {
if required > 0 {
// Not enough information to determine the exact field.
// (See below.)
return &RequiredNotSetError{"{Unknown}"}
}
return nil // input is satisfied
}
return fmt.Errorf("proto: %s: wiretype end group for non-group", st)
}
tag := int(u >> 3)
if tag <= 0 {
return fmt.Errorf("proto: %s: illegal tag %d (wire type %d)", st, tag, wire)
}
fieldnum, ok := prop.decoderTags.get(tag)
if !ok {
// Maybe it's an extension?
if prop.extendable {
if e, _ := extendable(structPointer_Interface(base, st)); isExtensionField(e, int32(tag)) {
if err = o.skip(st, tag, wire); err == nil {
extmap := e.extensionsWrite()
ext := extmap[int32(tag)] // may be missing
ext.enc = append(ext.enc, o.buf[oi:o.index]...)
extmap[int32(tag)] = ext
}
continue
}
}
// Maybe it's a oneof?
if prop.oneofUnmarshaler != nil {
m := structPointer_Interface(base, st).(Message)
// First return value indicates whether tag is a oneof field.
ok, err = prop.oneofUnmarshaler(m, tag, wire, o)
if err == ErrInternalBadWireType {
// Map the error to something more descriptive.
// Do the formatting here to save generated code space.
err = fmt.Errorf("bad wiretype for oneof field in %T", m)
}
if ok {
continue
}
}
err = o.skipAndSave(st, tag, wire, base, prop.unrecField)
continue
}
p := prop.Prop[fieldnum]
if p.dec == nil {
fmt.Fprintf(os.Stderr, "proto: no protobuf decoder for %s.%s\n", st, st.Field(fieldnum).Name)
continue
}
dec := p.dec
if wire != WireStartGroup && wire != p.WireType {
if wire == WireBytes && p.packedDec != nil {
// a packable field
dec = p.packedDec
} else {
err = fmt.Errorf("proto: bad wiretype for field %s.%s: got wiretype %d, want %d", st, st.Field(fieldnum).Name, wire, p.WireType)
continue
}
}
decErr := dec(o, p, base)
if decErr != nil && !state.shouldContinue(decErr, p) {
err = decErr
}
if err == nil && p.Required {
// Successfully decoded a required field.
if tag <= 64 {
// use bitmap for fields 1-64 to catch field reuse.
var mask uint64 = 1 << uint64(tag-1)
if reqFields&mask == 0 {
// new required field
reqFields |= mask
required--
}
} else {
// This is imprecise. It can be fooled by a required field
// with a tag > 64 that is encoded twice; that's very rare.
// A fully correct implementation would require allocating
// a data structure, which we would like to avoid.
required--
}
}
}
if err == nil {
if is_group {
return io.ErrUnexpectedEOF
}
if state.err != nil {
return state.err
}
if required > 0 {
// Not enough information to determine the exact field. If we use extra
// CPU, we could determine the field only if the missing required field
// has a tag <= 64 and we check reqFields.
return &RequiredNotSetError{"{Unknown}"}
}
}
return err
}
// Individual type decoders
// For each,
// u is the decoded value,
// v is a pointer to the field (pointer) in the struct
// Sizes of the pools to allocate inside the Buffer.
// The goal is modest amortization and allocation
// on at least 16-byte boundaries.
const (
boolPoolSize = 16
uint32PoolSize = 8
uint64PoolSize = 4
)
// Decode a bool.
func (o *Buffer) dec_bool(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
if len(o.bools) == 0 {
o.bools = make([]bool, boolPoolSize)
}
o.bools[0] = u != 0
*structPointer_Bool(base, p.field) = &o.bools[0]
o.bools = o.bools[1:]
return nil
}
func (o *Buffer) dec_proto3_bool(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
*structPointer_BoolVal(base, p.field) = u != 0
return nil
}
// Decode an int32.
func (o *Buffer) dec_int32(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
word32_Set(structPointer_Word32(base, p.field), o, uint32(u))
return nil
}
func (o *Buffer) dec_proto3_int32(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
word32Val_Set(structPointer_Word32Val(base, p.field), uint32(u))
return nil
}
// Decode an int64.
func (o *Buffer) dec_int64(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
word64_Set(structPointer_Word64(base, p.field), o, u)
return nil
}
func (o *Buffer) dec_proto3_int64(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
word64Val_Set(structPointer_Word64Val(base, p.field), o, u)
return nil
}
// Decode a string.
func (o *Buffer) dec_string(p *Properties, base structPointer) error {
s, err := o.DecodeStringBytes()
if err != nil {
return err
}
*structPointer_String(base, p.field) = &s
return nil
}
func (o *Buffer) dec_proto3_string(p *Properties, base structPointer) error {
s, err := o.DecodeStringBytes()
if err != nil {
return err
}
*structPointer_StringVal(base, p.field) = s
return nil
}
// Decode a slice of bytes ([]byte).
func (o *Buffer) dec_slice_byte(p *Properties, base structPointer) error {
b, err := o.DecodeRawBytes(true)
if err != nil {
return err
}
*structPointer_Bytes(base, p.field) = b
return nil
}
// Decode a slice of bools ([]bool).
func (o *Buffer) dec_slice_bool(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
v := structPointer_BoolSlice(base, p.field)
*v = append(*v, u != 0)
return nil
}
// Decode a slice of bools ([]bool) in packed format.
func (o *Buffer) dec_slice_packed_bool(p *Properties, base structPointer) error {
v := structPointer_BoolSlice(base, p.field)
nn, err := o.DecodeVarint()
if err != nil {
return err
}
nb := int(nn) // number of bytes of encoded bools
fin := o.index + nb
if fin < o.index {
return errOverflow
}
y := *v
for o.index < fin {
u, err := p.valDec(o)
if err != nil {
return err
}
y = append(y, u != 0)
}
*v = y
return nil
}
// Decode a slice of int32s ([]int32).
func (o *Buffer) dec_slice_int32(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
structPointer_Word32Slice(base, p.field).Append(uint32(u))
return nil
}
// Decode a slice of int32s ([]int32) in packed format.
func (o *Buffer) dec_slice_packed_int32(p *Properties, base structPointer) error {
v := structPointer_Word32Slice(base, p.field)
nn, err := o.DecodeVarint()
if err != nil {
return err
}
nb := int(nn) // number of bytes of encoded int32s
fin := o.index + nb
if fin < o.index {
return errOverflow
}
for o.index < fin {
u, err := p.valDec(o)
if err != nil {
return err
}
v.Append(uint32(u))
}
return nil
}
// Decode a slice of int64s ([]int64).
func (o *Buffer) dec_slice_int64(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
structPointer_Word64Slice(base, p.field).Append(u)
return nil
}
// Decode a slice of int64s ([]int64) in packed format.
func (o *Buffer) dec_slice_packed_int64(p *Properties, base structPointer) error {
v := structPointer_Word64Slice(base, p.field)
nn, err := o.DecodeVarint()
if err != nil {
return err
}
nb := int(nn) // number of bytes of encoded int64s
fin := o.index + nb
if fin < o.index {
return errOverflow
}
for o.index < fin {
u, err := p.valDec(o)
if err != nil {
return err
}
v.Append(u)
}
return nil
}
// Decode a slice of strings ([]string).
func (o *Buffer) dec_slice_string(p *Properties, base structPointer) error {
s, err := o.DecodeStringBytes()
if err != nil {
return err
}
v := structPointer_StringSlice(base, p.field)
*v = append(*v, s)
return nil
}
// Decode a slice of slice of bytes ([][]byte).
func (o *Buffer) dec_slice_slice_byte(p *Properties, base structPointer) error {
b, err := o.DecodeRawBytes(true)
if err != nil {
return err
}
v := structPointer_BytesSlice(base, p.field)
*v = append(*v, b)
return nil
}
// Decode a map field.
func (o *Buffer) dec_new_map(p *Properties, base structPointer) error {
raw, err := o.DecodeRawBytes(false)
if err != nil {
return err
}
oi := o.index // index at the end of this map entry
o.index -= len(raw) // move buffer back to start of map entry
mptr := structPointer_NewAt(base, p.field, p.mtype) // *map[K]V
if mptr.Elem().IsNil() {
mptr.Elem().Set(reflect.MakeMap(mptr.Type().Elem()))
}
v := mptr.Elem() // map[K]V
// Prepare addressable doubly-indirect placeholders for the key and value types.
// See enc_new_map for why.
keyptr := reflect.New(reflect.PtrTo(p.mtype.Key())).Elem() // addressable *K
keybase := toStructPointer(keyptr.Addr()) // **K
var valbase structPointer
var valptr reflect.Value
switch p.mtype.Elem().Kind() {
case reflect.Slice:
// []byte
var dummy []byte
valptr = reflect.ValueOf(&dummy) // *[]byte
valbase = toStructPointer(valptr) // *[]byte
case reflect.Ptr:
// message; valptr is **Msg; need to allocate the intermediate pointer
valptr = reflect.New(reflect.PtrTo(p.mtype.Elem())).Elem() // addressable *V
valptr.Set(reflect.New(valptr.Type().Elem()))
valbase = toStructPointer(valptr)
default:
// everything else
valptr = reflect.New(reflect.PtrTo(p.mtype.Elem())).Elem() // addressable *V
valbase = toStructPointer(valptr.Addr()) // **V
}
// Decode.
// This parses a restricted wire format, namely the encoding of a message
// with two fields. See enc_new_map for the format.
for o.index < oi {
// tagcode for key and value properties are always a single byte
// because they have tags 1 and 2.
tagcode := o.buf[o.index]
o.index++
switch tagcode {
case p.mkeyprop.tagcode[0]:
if err := p.mkeyprop.dec(o, p.mkeyprop, keybase); err != nil {
return err
}
case p.mvalprop.tagcode[0]:
if err := p.mvalprop.dec(o, p.mvalprop, valbase); err != nil {
return err
}
default:
// TODO: Should we silently skip this instead?
return fmt.Errorf("proto: bad map data tag %d", raw[0])
}
}
keyelem, valelem := keyptr.Elem(), valptr.Elem()
if !keyelem.IsValid() {
keyelem = reflect.Zero(p.mtype.Key())
}
if !valelem.IsValid() {
valelem = reflect.Zero(p.mtype.Elem())
}
v.SetMapIndex(keyelem, valelem)
return nil
}
// Decode a group.
func (o *Buffer) dec_struct_group(p *Properties, base structPointer) error {
bas := structPointer_GetStructPointer(base, p.field)
if structPointer_IsNil(bas) {
// allocate new nested message
bas = toStructPointer(reflect.New(p.stype))
structPointer_SetStructPointer(base, p.field, bas)
}
return o.unmarshalType(p.stype, p.sprop, true, bas)
}
// Decode an embedded message.
func (o *Buffer) dec_struct_message(p *Properties, base structPointer) (err error) {
raw, e := o.DecodeRawBytes(false)
if e != nil {
return e
}
bas := structPointer_GetStructPointer(base, p.field)
if structPointer_IsNil(bas) {
// allocate new nested message
bas = toStructPointer(reflect.New(p.stype))
structPointer_SetStructPointer(base, p.field, bas)
}
// If the object can unmarshal itself, let it.
if p.isUnmarshaler {
iv := structPointer_Interface(bas, p.stype)
return iv.(Unmarshaler).Unmarshal(raw)
}
obuf := o.buf
oi := o.index
o.buf = raw
o.index = 0
err = o.unmarshalType(p.stype, p.sprop, false, bas)
o.buf = obuf
o.index = oi
return err
}
// Decode a slice of embedded messages.
func (o *Buffer) dec_slice_struct_message(p *Properties, base structPointer) error {
return o.dec_slice_struct(p, false, base)
}
// Decode a slice of embedded groups.
func (o *Buffer) dec_slice_struct_group(p *Properties, base structPointer) error {
return o.dec_slice_struct(p, true, base)
}
// Decode a slice of structs ([]*struct).
func (o *Buffer) dec_slice_struct(p *Properties, is_group bool, base structPointer) error {
v := reflect.New(p.stype)
bas := toStructPointer(v)
structPointer_StructPointerSlice(base, p.field).Append(bas)
if is_group {
err := o.unmarshalType(p.stype, p.sprop, is_group, bas)
return err
}
raw, err := o.DecodeRawBytes(false)
if err != nil {
return err
}
// If the object can unmarshal itself, let it.
if p.isUnmarshaler {
iv := v.Interface()
return iv.(Unmarshaler).Unmarshal(raw)
}
obuf := o.buf
oi := o.index
o.buf = raw
o.index = 0
err = o.unmarshalType(p.stype, p.sprop, is_group, bas)
o.buf = obuf
o.index = oi
// Slow workaround for messages that aren't Unmarshalers.
// This includes some hand-coded .pb.go files and
// bootstrap protos.
// TODO: fix all of those and then add Unmarshal to
// the Message interface. Then:
// The cast above and code below can be deleted.
// The old unmarshaler can be deleted.
// Clients can call Unmarshal directly (can already do that, actually).
var info InternalMessageInfo
err := info.Unmarshal(pb, p.buf[p.index:])
p.index = len(p.buf)
return err
}

350
vendor/github.com/golang/protobuf/proto/discard.go generated vendored Normal file
View File

@ -0,0 +1,350 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2017 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
import (
"fmt"
"reflect"
"strings"
"sync"
"sync/atomic"
)
type generatedDiscarder interface {
XXX_DiscardUnknown()
}
// DiscardUnknown recursively discards all unknown fields from this message
// and all embedded messages.
//
// When unmarshaling a message with unrecognized fields, the tags and values
// of such fields are preserved in the Message. This allows a later call to
// marshal to be able to produce a message that continues to have those
// unrecognized fields. To avoid this, DiscardUnknown is used to
// explicitly clear the unknown fields after unmarshaling.
//
// For proto2 messages, the unknown fields of message extensions are only
// discarded from messages that have been accessed via GetExtension.
func DiscardUnknown(m Message) {
if m, ok := m.(generatedDiscarder); ok {
m.XXX_DiscardUnknown()
return
}
// TODO: Dynamically populate a InternalMessageInfo for legacy messages,
// but the master branch has no implementation for InternalMessageInfo,
// so it would be more work to replicate that approach.
discardLegacy(m)
}
// DiscardUnknown recursively discards all unknown fields.
func (a *InternalMessageInfo) DiscardUnknown(m Message) {
di := atomicLoadDiscardInfo(&a.discard)
if di == nil {
di = getDiscardInfo(reflect.TypeOf(m).Elem())
atomicStoreDiscardInfo(&a.discard, di)
}
di.discard(toPointer(&m))
}
type discardInfo struct {
typ reflect.Type
initialized int32 // 0: only typ is valid, 1: everything is valid
lock sync.Mutex
fields []discardFieldInfo
unrecognized field
}
type discardFieldInfo struct {
field field // Offset of field, guaranteed to be valid
discard func(src pointer)
}
var (
discardInfoMap = map[reflect.Type]*discardInfo{}
discardInfoLock sync.Mutex
)
func getDiscardInfo(t reflect.Type) *discardInfo {
discardInfoLock.Lock()
defer discardInfoLock.Unlock()
di := discardInfoMap[t]
if di == nil {
di = &discardInfo{typ: t}
discardInfoMap[t] = di
}
return di
}
func (di *discardInfo) discard(src pointer) {
if src.isNil() {
return // Nothing to do.
}
if atomic.LoadInt32(&di.initialized) == 0 {
di.computeDiscardInfo()
}
for _, fi := range di.fields {
sfp := src.offset(fi.field)
fi.discard(sfp)
}
// For proto2 messages, only discard unknown fields in message extensions
// that have been accessed via GetExtension.
if em, err := extendable(src.asPointerTo(di.typ).Interface()); err == nil {
// Ignore lock since DiscardUnknown is not concurrency safe.
emm, _ := em.extensionsRead()
for _, mx := range emm {
if m, ok := mx.value.(Message); ok {
DiscardUnknown(m)
}
}
}
if di.unrecognized.IsValid() {
*src.offset(di.unrecognized).toBytes() = nil
}
}
func (di *discardInfo) computeDiscardInfo() {
di.lock.Lock()
defer di.lock.Unlock()
if di.initialized != 0 {
return
}
t := di.typ
n := t.NumField()
for i := 0; i < n; i++ {
f := t.Field(i)
if strings.HasPrefix(f.Name, "XXX_") {
continue
}
dfi := discardFieldInfo{field: toField(&f)}
tf := f.Type
// Unwrap tf to get its most basic type.
var isPointer, isSlice bool
if tf.Kind() == reflect.Slice && tf.Elem().Kind() != reflect.Uint8 {
isSlice = true
tf = tf.Elem()
}
if tf.Kind() == reflect.Ptr {
isPointer = true
tf = tf.Elem()
}
if isPointer && isSlice && tf.Kind() != reflect.Struct {
panic(fmt.Sprintf("%v.%s cannot be a slice of pointers to primitive types", t, f.Name))
}
switch tf.Kind() {
case reflect.Struct:
switch {
case !isPointer:
panic(fmt.Sprintf("%v.%s cannot be a direct struct value", t, f.Name))
case isSlice: // E.g., []*pb.T
di := getDiscardInfo(tf)
dfi.discard = func(src pointer) {
sps := src.getPointerSlice()
for _, sp := range sps {
if !sp.isNil() {
di.discard(sp)
}
}
}
default: // E.g., *pb.T
di := getDiscardInfo(tf)
dfi.discard = func(src pointer) {
sp := src.getPointer()
if !sp.isNil() {
di.discard(sp)
}
}
}
case reflect.Map:
switch {
case isPointer || isSlice:
panic(fmt.Sprintf("%v.%s cannot be a pointer to a map or a slice of map values", t, f.Name))
default: // E.g., map[K]V
if tf.Elem().Kind() == reflect.Ptr { // Proto struct (e.g., *T)
dfi.discard = func(src pointer) {
sm := src.asPointerTo(tf).Elem()
if sm.Len() == 0 {
return
}
for _, key := range sm.MapKeys() {
val := sm.MapIndex(key)
DiscardUnknown(val.Interface().(Message))
}
}
} else {
dfi.discard = func(pointer) {} // Noop
}
}
case reflect.Interface:
// Must be oneof field.
switch {
case isPointer || isSlice:
panic(fmt.Sprintf("%v.%s cannot be a pointer to a interface or a slice of interface values", t, f.Name))
default: // E.g., interface{}
// TODO: Make this faster?
dfi.discard = func(src pointer) {
su := src.asPointerTo(tf).Elem()
if !su.IsNil() {
sv := su.Elem().Elem().Field(0)
if sv.Kind() == reflect.Ptr && sv.IsNil() {
return
}
switch sv.Type().Kind() {
case reflect.Ptr: // Proto struct (e.g., *T)
DiscardUnknown(sv.Interface().(Message))
}
}
}
}
default:
continue
}
di.fields = append(di.fields, dfi)
}
di.unrecognized = invalidField
if f, ok := t.FieldByName("XXX_unrecognized"); ok {
if f.Type != reflect.TypeOf([]byte{}) {
panic("expected XXX_unrecognized to be of type []byte")
}
di.unrecognized = toField(&f)
}
atomic.StoreInt32(&di.initialized, 1)
}
func discardLegacy(m Message) {
v := reflect.ValueOf(m)
if v.Kind() != reflect.Ptr || v.IsNil() {
return
}
v = v.Elem()
if v.Kind() != reflect.Struct {
return
}
t := v.Type()
for i := 0; i < v.NumField(); i++ {
f := t.Field(i)
if strings.HasPrefix(f.Name, "XXX_") {
continue
}
vf := v.Field(i)
tf := f.Type
// Unwrap tf to get its most basic type.
var isPointer, isSlice bool
if tf.Kind() == reflect.Slice && tf.Elem().Kind() != reflect.Uint8 {
isSlice = true
tf = tf.Elem()
}
if tf.Kind() == reflect.Ptr {
isPointer = true
tf = tf.Elem()
}
if isPointer && isSlice && tf.Kind() != reflect.Struct {
panic(fmt.Sprintf("%T.%s cannot be a slice of pointers to primitive types", m, f.Name))
}
switch tf.Kind() {
case reflect.Struct:
switch {
case !isPointer:
panic(fmt.Sprintf("%T.%s cannot be a direct struct value", m, f.Name))
case isSlice: // E.g., []*pb.T
for j := 0; j < vf.Len(); j++ {
discardLegacy(vf.Index(j).Interface().(Message))
}
default: // E.g., *pb.T
discardLegacy(vf.Interface().(Message))
}
case reflect.Map:
switch {
case isPointer || isSlice:
panic(fmt.Sprintf("%T.%s cannot be a pointer to a map or a slice of map values", m, f.Name))
default: // E.g., map[K]V
tv := vf.Type().Elem()
if tv.Kind() == reflect.Ptr && tv.Implements(protoMessageType) { // Proto struct (e.g., *T)
for _, key := range vf.MapKeys() {
val := vf.MapIndex(key)
discardLegacy(val.Interface().(Message))
}
}
}
case reflect.Interface:
// Must be oneof field.
switch {
case isPointer || isSlice:
panic(fmt.Sprintf("%T.%s cannot be a pointer to a interface or a slice of interface values", m, f.Name))
default: // E.g., test_proto.isCommunique_Union interface
if !vf.IsNil() && f.Tag.Get("protobuf_oneof") != "" {
vf = vf.Elem() // E.g., *test_proto.Communique_Msg
if !vf.IsNil() {
vf = vf.Elem() // E.g., test_proto.Communique_Msg
vf = vf.Field(0) // E.g., Proto struct (e.g., *T) or primitive value
if vf.Kind() == reflect.Ptr {
discardLegacy(vf.Interface().(Message))
}
}
}
}
}
}
if vf := v.FieldByName("XXX_unrecognized"); vf.IsValid() {
if vf.Type() != reflect.TypeOf([]byte{}) {
panic("expected XXX_unrecognized to be of type []byte")
}
vf.Set(reflect.ValueOf([]byte(nil)))
}
// For proto2 messages, only discard unknown fields in message extensions
// that have been accessed via GetExtension.
if em, err := extendable(m); err == nil {
// Ignore lock since discardLegacy is not concurrency safe.
emm, _ := em.extensionsRead()
for _, mx := range emm {
if m, ok := mx.value.(Message); ok {
discardLegacy(m)
}
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -109,15 +109,6 @@ func equalStruct(v1, v2 reflect.Value) bool {
// set/unset mismatch
return false
}
b1, ok := f1.Interface().(raw)
if ok {
b2 := f2.Interface().(raw)
// RawMessage
if !bytes.Equal(b1.Bytes(), b2.Bytes()) {
return false
}
continue
}
f1, f2 = f1.Elem(), f2.Elem()
}
if !equalAny(f1, f2, sprop.Prop[i]) {
@ -146,11 +137,7 @@ func equalStruct(v1, v2 reflect.Value) bool {
u1 := uf.Bytes()
u2 := v2.FieldByName("XXX_unrecognized").Bytes()
if !bytes.Equal(u1, u2) {
return false
}
return true
return bytes.Equal(u1, u2)
}
// v1 and v2 are known to have the same type.
@ -261,6 +248,15 @@ func equalExtMap(base reflect.Type, em1, em2 map[int32]Extension) bool {
m1, m2 := e1.value, e2.value
if m1 == nil && m2 == nil {
// Both have only encoded form.
if bytes.Equal(e1.enc, e2.enc) {
continue
}
// The bytes are different, but the extensions might still be
// equal. We need to decode them to compare.
}
if m1 != nil && m2 != nil {
// Both are unencoded.
if !equalAny(reflect.ValueOf(m1), reflect.ValueOf(m2), nil) {
@ -276,8 +272,12 @@ func equalExtMap(base reflect.Type, em1, em2 map[int32]Extension) bool {
desc = m[extNum]
}
if desc == nil {
// If both have only encoded form and the bytes are the same,
// it is handled above. We get here when the bytes are different.
// We don't know how to decode it, so just compare them as byte
// slices.
log.Printf("proto: don't know how to compare extension %d of %v", extNum, base)
continue
return false
}
var err error
if m1 == nil {

View File

@ -38,6 +38,7 @@ package proto
import (
"errors"
"fmt"
"io"
"reflect"
"strconv"
"sync"
@ -91,14 +92,29 @@ func (n notLocker) Unlock() {}
// extendable returns the extendableProto interface for the given generated proto message.
// If the proto message has the old extension format, it returns a wrapper that implements
// the extendableProto interface.
func extendable(p interface{}) (extendableProto, bool) {
if ep, ok := p.(extendableProto); ok {
return ep, ok
func extendable(p interface{}) (extendableProto, error) {
switch p := p.(type) {
case extendableProto:
if isNilPtr(p) {
return nil, fmt.Errorf("proto: nil %T is not extendable", p)
}
return p, nil
case extendableProtoV1:
if isNilPtr(p) {
return nil, fmt.Errorf("proto: nil %T is not extendable", p)
}
return extensionAdapter{p}, nil
}
if ep, ok := p.(extendableProtoV1); ok {
return extensionAdapter{ep}, ok
}
return nil, false
// Don't allocate a specific error containing %T:
// this is the hot path for Clone and MarshalText.
return nil, errNotExtendable
}
var errNotExtendable = errors.New("proto: not an extendable proto.Message")
func isNilPtr(x interface{}) bool {
v := reflect.ValueOf(x)
return v.Kind() == reflect.Ptr && v.IsNil()
}
// XXX_InternalExtensions is an internal representation of proto extensions.
@ -143,9 +159,6 @@ func (e *XXX_InternalExtensions) extensionsRead() (map[int32]Extension, sync.Loc
return e.p.extensionMap, &e.p.mu
}
var extendableProtoType = reflect.TypeOf((*extendableProto)(nil)).Elem()
var extendableProtoV1Type = reflect.TypeOf((*extendableProtoV1)(nil)).Elem()
// ExtensionDesc represents an extension specification.
// Used in generated code from the protocol compiler.
type ExtensionDesc struct {
@ -179,8 +192,8 @@ type Extension struct {
// SetRawExtension is for testing only.
func SetRawExtension(base Message, id int32, b []byte) {
epb, ok := extendable(base)
if !ok {
epb, err := extendable(base)
if err != nil {
return
}
extmap := epb.extensionsWrite()
@ -205,7 +218,7 @@ func checkExtensionTypes(pb extendableProto, extension *ExtensionDesc) error {
pbi = ea.extendableProtoV1
}
if a, b := reflect.TypeOf(pbi), reflect.TypeOf(extension.ExtendedType); a != b {
return errors.New("proto: bad extended type; " + b.String() + " does not extend " + a.String())
return fmt.Errorf("proto: bad extended type; %v does not extend %v", b, a)
}
// Check the range.
if !isExtensionField(pb, extension.Field) {
@ -250,85 +263,11 @@ func extensionProperties(ed *ExtensionDesc) *Properties {
return prop
}
// encode encodes any unmarshaled (unencoded) extensions in e.
func encodeExtensions(e *XXX_InternalExtensions) error {
m, mu := e.extensionsRead()
if m == nil {
return nil // fast path
}
mu.Lock()
defer mu.Unlock()
return encodeExtensionsMap(m)
}
// encode encodes any unmarshaled (unencoded) extensions in e.
func encodeExtensionsMap(m map[int32]Extension) error {
for k, e := range m {
if e.value == nil || e.desc == nil {
// Extension is only in its encoded form.
continue
}
// We don't skip extensions that have an encoded form set,
// because the extension value may have been mutated after
// the last time this function was called.
et := reflect.TypeOf(e.desc.ExtensionType)
props := extensionProperties(e.desc)
p := NewBuffer(nil)
// If e.value has type T, the encoder expects a *struct{ X T }.
// Pass a *T with a zero field and hope it all works out.
x := reflect.New(et)
x.Elem().Set(reflect.ValueOf(e.value))
if err := props.enc(p, props, toStructPointer(x)); err != nil {
return err
}
e.enc = p.buf
m[k] = e
}
return nil
}
func extensionsSize(e *XXX_InternalExtensions) (n int) {
m, mu := e.extensionsRead()
if m == nil {
return 0
}
mu.Lock()
defer mu.Unlock()
return extensionsMapSize(m)
}
func extensionsMapSize(m map[int32]Extension) (n int) {
for _, e := range m {
if e.value == nil || e.desc == nil {
// Extension is only in its encoded form.
n += len(e.enc)
continue
}
// We don't skip extensions that have an encoded form set,
// because the extension value may have been mutated after
// the last time this function was called.
et := reflect.TypeOf(e.desc.ExtensionType)
props := extensionProperties(e.desc)
// If e.value has type T, the encoder expects a *struct{ X T }.
// Pass a *T with a zero field and hope it all works out.
x := reflect.New(et)
x.Elem().Set(reflect.ValueOf(e.value))
n += props.size(props, toStructPointer(x))
}
return
}
// HasExtension returns whether the given extension is present in pb.
func HasExtension(pb Message, extension *ExtensionDesc) bool {
// TODO: Check types, field numbers, etc.?
epb, ok := extendable(pb)
if !ok {
epb, err := extendable(pb)
if err != nil {
return false
}
extmap, mu := epb.extensionsRead()
@ -336,15 +275,15 @@ func HasExtension(pb Message, extension *ExtensionDesc) bool {
return false
}
mu.Lock()
_, ok = extmap[extension.Field]
_, ok := extmap[extension.Field]
mu.Unlock()
return ok
}
// ClearExtension removes the given extension from pb.
func ClearExtension(pb Message, extension *ExtensionDesc) {
epb, ok := extendable(pb)
if !ok {
epb, err := extendable(pb)
if err != nil {
return
}
// TODO: Check types, field numbers, etc.?
@ -352,16 +291,26 @@ func ClearExtension(pb Message, extension *ExtensionDesc) {
delete(extmap, extension.Field)
}
// GetExtension parses and returns the given extension of pb.
// If the extension is not present and has no default value it returns ErrMissingExtension.
// GetExtension retrieves a proto2 extended field from pb.
//
// If the descriptor is type complete (i.e., ExtensionDesc.ExtensionType is non-nil),
// then GetExtension parses the encoded field and returns a Go value of the specified type.
// If the field is not present, then the default value is returned (if one is specified),
// otherwise ErrMissingExtension is reported.
//
// If the descriptor is not type complete (i.e., ExtensionDesc.ExtensionType is nil),
// then GetExtension returns the raw encoded bytes of the field extension.
func GetExtension(pb Message, extension *ExtensionDesc) (interface{}, error) {
epb, ok := extendable(pb)
if !ok {
return nil, errors.New("proto: not an extendable proto")
epb, err := extendable(pb)
if err != nil {
return nil, err
}
if err := checkExtensionTypes(epb, extension); err != nil {
return nil, err
if extension.ExtendedType != nil {
// can only check type if this is a complete descriptor
if err := checkExtensionTypes(epb, extension); err != nil {
return nil, err
}
}
emap, mu := epb.extensionsRead()
@ -388,6 +337,11 @@ func GetExtension(pb Message, extension *ExtensionDesc) (interface{}, error) {
return e.value, nil
}
if extension.ExtensionType == nil {
// incomplete descriptor
return e.enc, nil
}
v, err := decodeExtension(e.enc, extension)
if err != nil {
return nil, err
@ -405,6 +359,11 @@ func GetExtension(pb Message, extension *ExtensionDesc) (interface{}, error) {
// defaultExtensionValue returns the default value for extension.
// If no default for an extension is defined ErrMissingExtension is returned.
func defaultExtensionValue(extension *ExtensionDesc) (interface{}, error) {
if extension.ExtensionType == nil {
// incomplete descriptor, so no default
return nil, ErrMissingExtension
}
t := reflect.TypeOf(extension.ExtensionType)
props := extensionProperties(extension)
@ -439,31 +398,28 @@ func defaultExtensionValue(extension *ExtensionDesc) (interface{}, error) {
// decodeExtension decodes an extension encoded in b.
func decodeExtension(b []byte, extension *ExtensionDesc) (interface{}, error) {
o := NewBuffer(b)
t := reflect.TypeOf(extension.ExtensionType)
props := extensionProperties(extension)
unmarshal := typeUnmarshaler(t, extension.Tag)
// t is a pointer to a struct, pointer to basic type or a slice.
// Allocate a "field" to store the pointer/slice itself; the
// pointer/slice will be stored here. We pass
// the address of this field to props.dec.
// This passes a zero field and a *t and lets props.dec
// interpret it as a *struct{ x t }.
// Allocate space to store the pointer/slice.
value := reflect.New(t).Elem()
var err error
for {
// Discard wire type and field number varint. It isn't needed.
if _, err := o.DecodeVarint(); err != nil {
x, n := decodeVarint(b)
if n == 0 {
return nil, io.ErrUnexpectedEOF
}
b = b[n:]
wire := int(x) & 7
b, err = unmarshal(b, valToPointer(value.Addr()), wire)
if err != nil {
return nil, err
}
if err := props.dec(o, props, toStructPointer(value.Addr())); err != nil {
return nil, err
}
if o.index >= len(o.buf) {
if len(b) == 0 {
break
}
}
@ -473,9 +429,9 @@ func decodeExtension(b []byte, extension *ExtensionDesc) (interface{}, error) {
// GetExtensions returns a slice of the extensions present in pb that are also listed in es.
// The returned slice has the same length as es; missing extensions will appear as nil elements.
func GetExtensions(pb Message, es []*ExtensionDesc) (extensions []interface{}, err error) {
epb, ok := extendable(pb)
if !ok {
return nil, errors.New("proto: not an extendable proto")
epb, err := extendable(pb)
if err != nil {
return nil, err
}
extensions = make([]interface{}, len(es))
for i, e := range es {
@ -494,9 +450,9 @@ func GetExtensions(pb Message, es []*ExtensionDesc) (extensions []interface{}, e
// For non-registered extensions, ExtensionDescs returns an incomplete descriptor containing
// just the Field field, which defines the extension's field number.
func ExtensionDescs(pb Message) ([]*ExtensionDesc, error) {
epb, ok := extendable(pb)
if !ok {
return nil, fmt.Errorf("proto: %T is not an extendable proto.Message", pb)
epb, err := extendable(pb)
if err != nil {
return nil, err
}
registeredExtensions := RegisteredExtensions(pb)
@ -523,9 +479,9 @@ func ExtensionDescs(pb Message) ([]*ExtensionDesc, error) {
// SetExtension sets the specified extension of pb to the specified value.
func SetExtension(pb Message, extension *ExtensionDesc, value interface{}) error {
epb, ok := extendable(pb)
if !ok {
return errors.New("proto: not an extendable proto")
epb, err := extendable(pb)
if err != nil {
return err
}
if err := checkExtensionTypes(epb, extension); err != nil {
return err
@ -550,8 +506,8 @@ func SetExtension(pb Message, extension *ExtensionDesc, value interface{}) error
// ClearAllExtensions clears all extensions from pb.
func ClearAllExtensions(pb Message) {
epb, ok := extendable(pb)
if !ok {
epb, err := extendable(pb)
if err != nil {
return
}
m := epb.extensionsWrite()

View File

@ -265,6 +265,7 @@ package proto
import (
"encoding/json"
"errors"
"fmt"
"log"
"reflect"
@ -273,6 +274,8 @@ import (
"sync"
)
var errInvalidUTF8 = errors.New("proto: invalid UTF-8 string")
// Message is implemented by generated protocol buffer messages.
type Message interface {
Reset()
@ -309,16 +312,7 @@ type Buffer struct {
buf []byte // encode/decode byte stream
index int // read point
// pools of basic types to amortize allocation.
bools []bool
uint32s []uint32
uint64s []uint64
// extra pools, only used with pointer_reflect.go
int32s []int32
int64s []int64
float32s []float32
float64s []float64
deterministic bool
}
// NewBuffer allocates a new Buffer and initializes its internal data to
@ -343,6 +337,30 @@ func (p *Buffer) SetBuf(s []byte) {
// Bytes returns the contents of the Buffer.
func (p *Buffer) Bytes() []byte { return p.buf }
// SetDeterministic sets whether to use deterministic serialization.
//
// Deterministic serialization guarantees that for a given binary, equal
// messages will always be serialized to the same bytes. This implies:
//
// - Repeated serialization of a message will return the same bytes.
// - Different processes of the same binary (which may be executing on
// different machines) will serialize equal messages to the same bytes.
//
// Note that the deterministic serialization is NOT canonical across
// languages. It is not guaranteed to remain stable over time. It is unstable
// across different builds with schema changes due to unknown fields.
// Users who need canonical serialization (e.g., persistent storage in a
// canonical form, fingerprinting, etc.) should define their own
// canonicalization specification and implement their own serializer rather
// than relying on this API.
//
// If deterministic serialization is requested, map entries will be sorted
// by keys in lexographical order. This is an implementation detail and
// subject to change.
func (p *Buffer) SetDeterministic(deterministic bool) {
p.deterministic = deterministic
}
/*
* Helper routines for simplifying the creation of optional fields of basic type.
*/
@ -831,22 +849,12 @@ func fieldDefault(ft reflect.Type, prop *Properties) (sf *scalarField, nestedMes
return sf, false, nil
}
// mapKeys returns a sort.Interface to be used for sorting the map keys.
// Map fields may have key types of non-float scalars, strings and enums.
// The easiest way to sort them in some deterministic order is to use fmt.
// If this turns out to be inefficient we can always consider other options,
// such as doing a Schwartzian transform.
func mapKeys(vs []reflect.Value) sort.Interface {
s := mapKeySorter{
vs: vs,
// default Less function: textual comparison
less: func(a, b reflect.Value) bool {
return fmt.Sprint(a.Interface()) < fmt.Sprint(b.Interface())
},
}
s := mapKeySorter{vs: vs}
// Type specialization per https://developers.google.com/protocol-buffers/docs/proto#maps;
// numeric keys are sorted numerically.
// Type specialization per https://developers.google.com/protocol-buffers/docs/proto#maps.
if len(vs) == 0 {
return s
}
@ -855,6 +863,12 @@ func mapKeys(vs []reflect.Value) sort.Interface {
s.less = func(a, b reflect.Value) bool { return a.Int() < b.Int() }
case reflect.Uint32, reflect.Uint64:
s.less = func(a, b reflect.Value) bool { return a.Uint() < b.Uint() }
case reflect.Bool:
s.less = func(a, b reflect.Value) bool { return !a.Bool() && b.Bool() } // false < true
case reflect.String:
s.less = func(a, b reflect.Value) bool { return a.String() < b.String() }
default:
panic(fmt.Sprintf("unsupported map key type: %v", vs[0].Kind()))
}
return s
@ -895,3 +909,13 @@ const ProtoPackageIsVersion2 = true
// ProtoPackageIsVersion1 is referenced from generated protocol buffer files
// to assert that that code is compatible with this version of the proto package.
const ProtoPackageIsVersion1 = true
// InternalMessageInfo is a type used internally by generated .pb.go files.
// This type is not intended to be used by non-generated code.
// This type is not subject to any compatibility guarantee.
type InternalMessageInfo struct {
marshal *marshalInfo
unmarshal *unmarshalInfo
merge *mergeInfo
discard *discardInfo
}

View File

@ -42,6 +42,7 @@ import (
"fmt"
"reflect"
"sort"
"sync"
)
// errNoMessageTypeID occurs when a protocol buffer does not have a message type ID.
@ -94,10 +95,7 @@ func (ms *messageSet) find(pb Message) *_MessageSet_Item {
}
func (ms *messageSet) Has(pb Message) bool {
if ms.find(pb) != nil {
return true
}
return false
return ms.find(pb) != nil
}
func (ms *messageSet) Unmarshal(pb Message) error {
@ -150,46 +148,42 @@ func skipVarint(buf []byte) []byte {
// MarshalMessageSet encodes the extension map represented by m in the message set wire format.
// It is called by generated Marshal methods on protocol buffer messages with the message_set_wire_format option.
func MarshalMessageSet(exts interface{}) ([]byte, error) {
var m map[int32]Extension
return marshalMessageSet(exts, false)
}
// marshaMessageSet implements above function, with the opt to turn on / off deterministic during Marshal.
func marshalMessageSet(exts interface{}, deterministic bool) ([]byte, error) {
switch exts := exts.(type) {
case *XXX_InternalExtensions:
if err := encodeExtensions(exts); err != nil {
return nil, err
}
m, _ = exts.extensionsRead()
var u marshalInfo
siz := u.sizeMessageSet(exts)
b := make([]byte, 0, siz)
return u.appendMessageSet(b, exts, deterministic)
case map[int32]Extension:
if err := encodeExtensionsMap(exts); err != nil {
return nil, err
// This is an old-style extension map.
// Wrap it in a new-style XXX_InternalExtensions.
ie := XXX_InternalExtensions{
p: &struct {
mu sync.Mutex
extensionMap map[int32]Extension
}{
extensionMap: exts,
},
}
m = exts
var u marshalInfo
siz := u.sizeMessageSet(&ie)
b := make([]byte, 0, siz)
return u.appendMessageSet(b, &ie, deterministic)
default:
return nil, errors.New("proto: not an extension map")
}
// Sort extension IDs to provide a deterministic encoding.
// See also enc_map in encode.go.
ids := make([]int, 0, len(m))
for id := range m {
ids = append(ids, int(id))
}
sort.Ints(ids)
ms := &messageSet{Item: make([]*_MessageSet_Item, 0, len(m))}
for _, id := range ids {
e := m[int32(id)]
// Remove the wire type and field number varint, as well as the length varint.
msg := skipVarint(skipVarint(e.enc))
ms.Item = append(ms.Item, &_MessageSet_Item{
TypeId: Int32(int32(id)),
Message: msg,
})
}
return Marshal(ms)
}
// UnmarshalMessageSet decodes the extension map encoded in buf in the message set wire format.
// It is called by generated Unmarshal methods on protocol buffer messages with the message_set_wire_format option.
// It is called by Unmarshal methods on protocol buffer messages with the message_set_wire_format option.
func UnmarshalMessageSet(buf []byte, exts interface{}) error {
var m map[int32]Extension
switch exts := exts.(type) {
@ -235,7 +229,15 @@ func MarshalMessageSetJSON(exts interface{}) ([]byte, error) {
var m map[int32]Extension
switch exts := exts.(type) {
case *XXX_InternalExtensions:
m, _ = exts.extensionsRead()
var mu sync.Locker
m, mu = exts.extensionsRead()
if m != nil {
// Keep the extensions map locked until we're done marshaling to prevent
// races between marshaling and unmarshaling the lazily-{en,de}coded
// values.
mu.Lock()
defer mu.Unlock()
}
case map[int32]Extension:
m = exts
default:
@ -253,15 +255,16 @@ func MarshalMessageSetJSON(exts interface{}) ([]byte, error) {
for i, id := range ids {
ext := m[id]
if i > 0 {
b.WriteByte(',')
}
msd, ok := messageSetMap[id]
if !ok {
// Unknown type; we can't render it, so skip it.
continue
}
if i > 0 && b.Len() > 1 {
b.WriteByte(',')
}
fmt.Fprintf(&b, `"[%s]":`, msd.name)
x := ext.value

View File

@ -29,7 +29,7 @@
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// +build appengine js
// +build purego appengine js
// This file contains an implementation of proto field accesses using package reflect.
// It is slower than the code in pointer_unsafe.go but it avoids package unsafe and can
@ -38,32 +38,13 @@
package proto
import (
"math"
"reflect"
"sync"
)
// A structPointer is a pointer to a struct.
type structPointer struct {
v reflect.Value
}
const unsafeAllowed = false
// toStructPointer returns a structPointer equivalent to the given reflect value.
// The reflect value must itself be a pointer to a struct.
func toStructPointer(v reflect.Value) structPointer {
return structPointer{v}
}
// IsNil reports whether p is nil.
func structPointer_IsNil(p structPointer) bool {
return p.v.IsNil()
}
// Interface returns the struct pointer as an interface value.
func structPointer_Interface(p structPointer, _ reflect.Type) interface{} {
return p.v.Interface()
}
// A field identifies a field in a struct, accessible from a structPointer.
// A field identifies a field in a struct, accessible from a pointer.
// In this implementation, a field is identified by the sequence of field indices
// passed to reflect's FieldByIndex.
type field []int
@ -76,409 +57,301 @@ func toField(f *reflect.StructField) field {
// invalidField is an invalid field identifier.
var invalidField = field(nil)
// zeroField is a noop when calling pointer.offset.
var zeroField = field([]int{})
// IsValid reports whether the field identifier is valid.
func (f field) IsValid() bool { return f != nil }
// field returns the given field in the struct as a reflect value.
func structPointer_field(p structPointer, f field) reflect.Value {
// Special case: an extension map entry with a value of type T
// passes a *T to the struct-handling code with a zero field,
// expecting that it will be treated as equivalent to *struct{ X T },
// which has the same memory layout. We have to handle that case
// specially, because reflect will panic if we call FieldByIndex on a
// non-struct.
if f == nil {
return p.v.Elem()
}
return p.v.Elem().FieldByIndex(f)
}
// ifield returns the given field in the struct as an interface value.
func structPointer_ifield(p structPointer, f field) interface{} {
return structPointer_field(p, f).Addr().Interface()
}
// Bytes returns the address of a []byte field in the struct.
func structPointer_Bytes(p structPointer, f field) *[]byte {
return structPointer_ifield(p, f).(*[]byte)
}
// BytesSlice returns the address of a [][]byte field in the struct.
func structPointer_BytesSlice(p structPointer, f field) *[][]byte {
return structPointer_ifield(p, f).(*[][]byte)
}
// Bool returns the address of a *bool field in the struct.
func structPointer_Bool(p structPointer, f field) **bool {
return structPointer_ifield(p, f).(**bool)
}
// BoolVal returns the address of a bool field in the struct.
func structPointer_BoolVal(p structPointer, f field) *bool {
return structPointer_ifield(p, f).(*bool)
}
// BoolSlice returns the address of a []bool field in the struct.
func structPointer_BoolSlice(p structPointer, f field) *[]bool {
return structPointer_ifield(p, f).(*[]bool)
}
// String returns the address of a *string field in the struct.
func structPointer_String(p structPointer, f field) **string {
return structPointer_ifield(p, f).(**string)
}
// StringVal returns the address of a string field in the struct.
func structPointer_StringVal(p structPointer, f field) *string {
return structPointer_ifield(p, f).(*string)
}
// StringSlice returns the address of a []string field in the struct.
func structPointer_StringSlice(p structPointer, f field) *[]string {
return structPointer_ifield(p, f).(*[]string)
}
// Extensions returns the address of an extension map field in the struct.
func structPointer_Extensions(p structPointer, f field) *XXX_InternalExtensions {
return structPointer_ifield(p, f).(*XXX_InternalExtensions)
}
// ExtMap returns the address of an extension map field in the struct.
func structPointer_ExtMap(p structPointer, f field) *map[int32]Extension {
return structPointer_ifield(p, f).(*map[int32]Extension)
}
// NewAt returns the reflect.Value for a pointer to a field in the struct.
func structPointer_NewAt(p structPointer, f field, typ reflect.Type) reflect.Value {
return structPointer_field(p, f).Addr()
}
// SetStructPointer writes a *struct field in the struct.
func structPointer_SetStructPointer(p structPointer, f field, q structPointer) {
structPointer_field(p, f).Set(q.v)
}
// GetStructPointer reads a *struct field in the struct.
func structPointer_GetStructPointer(p structPointer, f field) structPointer {
return structPointer{structPointer_field(p, f)}
}
// StructPointerSlice the address of a []*struct field in the struct.
func structPointer_StructPointerSlice(p structPointer, f field) structPointerSlice {
return structPointerSlice{structPointer_field(p, f)}
}
// A structPointerSlice represents the address of a slice of pointers to structs
// (themselves messages or groups). That is, v.Type() is *[]*struct{...}.
type structPointerSlice struct {
// The pointer type is for the table-driven decoder.
// The implementation here uses a reflect.Value of pointer type to
// create a generic pointer. In pointer_unsafe.go we use unsafe
// instead of reflect to implement the same (but faster) interface.
type pointer struct {
v reflect.Value
}
func (p structPointerSlice) Len() int { return p.v.Len() }
func (p structPointerSlice) Index(i int) structPointer { return structPointer{p.v.Index(i)} }
func (p structPointerSlice) Append(q structPointer) {
p.v.Set(reflect.Append(p.v, q.v))
// toPointer converts an interface of pointer type to a pointer
// that points to the same target.
func toPointer(i *Message) pointer {
return pointer{v: reflect.ValueOf(*i)}
}
var (
int32Type = reflect.TypeOf(int32(0))
uint32Type = reflect.TypeOf(uint32(0))
float32Type = reflect.TypeOf(float32(0))
int64Type = reflect.TypeOf(int64(0))
uint64Type = reflect.TypeOf(uint64(0))
float64Type = reflect.TypeOf(float64(0))
)
// A word32 represents a field of type *int32, *uint32, *float32, or *enum.
// That is, v.Type() is *int32, *uint32, *float32, or *enum and v is assignable.
type word32 struct {
v reflect.Value
// toAddrPointer converts an interface to a pointer that points to
// the interface data.
func toAddrPointer(i *interface{}, isptr bool) pointer {
v := reflect.ValueOf(*i)
u := reflect.New(v.Type())
u.Elem().Set(v)
return pointer{v: u}
}
// IsNil reports whether p is nil.
func word32_IsNil(p word32) bool {
// valToPointer converts v to a pointer. v must be of pointer type.
func valToPointer(v reflect.Value) pointer {
return pointer{v: v}
}
// offset converts from a pointer to a structure to a pointer to
// one of its fields.
func (p pointer) offset(f field) pointer {
return pointer{v: p.v.Elem().FieldByIndex(f).Addr()}
}
func (p pointer) isNil() bool {
return p.v.IsNil()
}
// Set sets p to point at a newly allocated word with bits set to x.
func word32_Set(p word32, o *Buffer, x uint32) {
t := p.v.Type().Elem()
switch t {
case int32Type:
if len(o.int32s) == 0 {
o.int32s = make([]int32, uint32PoolSize)
}
o.int32s[0] = int32(x)
p.v.Set(reflect.ValueOf(&o.int32s[0]))
o.int32s = o.int32s[1:]
return
case uint32Type:
if len(o.uint32s) == 0 {
o.uint32s = make([]uint32, uint32PoolSize)
}
o.uint32s[0] = x
p.v.Set(reflect.ValueOf(&o.uint32s[0]))
o.uint32s = o.uint32s[1:]
return
case float32Type:
if len(o.float32s) == 0 {
o.float32s = make([]float32, uint32PoolSize)
}
o.float32s[0] = math.Float32frombits(x)
p.v.Set(reflect.ValueOf(&o.float32s[0]))
o.float32s = o.float32s[1:]
return
}
// must be enum
p.v.Set(reflect.New(t))
p.v.Elem().SetInt(int64(int32(x)))
}
// Get gets the bits pointed at by p, as a uint32.
func word32_Get(p word32) uint32 {
elem := p.v.Elem()
switch elem.Kind() {
case reflect.Int32:
return uint32(elem.Int())
case reflect.Uint32:
return uint32(elem.Uint())
case reflect.Float32:
return math.Float32bits(float32(elem.Float()))
}
panic("unreachable")
}
// Word32 returns a reference to a *int32, *uint32, *float32, or *enum field in the struct.
func structPointer_Word32(p structPointer, f field) word32 {
return word32{structPointer_field(p, f)}
}
// A word32Val represents a field of type int32, uint32, float32, or enum.
// That is, v.Type() is int32, uint32, float32, or enum and v is assignable.
type word32Val struct {
v reflect.Value
}
// Set sets *p to x.
func word32Val_Set(p word32Val, x uint32) {
switch p.v.Type() {
case int32Type:
p.v.SetInt(int64(x))
return
case uint32Type:
p.v.SetUint(uint64(x))
return
case float32Type:
p.v.SetFloat(float64(math.Float32frombits(x)))
return
}
// must be enum
p.v.SetInt(int64(int32(x)))
}
// Get gets the bits pointed at by p, as a uint32.
func word32Val_Get(p word32Val) uint32 {
elem := p.v
switch elem.Kind() {
case reflect.Int32:
return uint32(elem.Int())
case reflect.Uint32:
return uint32(elem.Uint())
case reflect.Float32:
return math.Float32bits(float32(elem.Float()))
}
panic("unreachable")
}
// Word32Val returns a reference to a int32, uint32, float32, or enum field in the struct.
func structPointer_Word32Val(p structPointer, f field) word32Val {
return word32Val{structPointer_field(p, f)}
}
// A word32Slice is a slice of 32-bit values.
// That is, v.Type() is []int32, []uint32, []float32, or []enum.
type word32Slice struct {
v reflect.Value
}
func (p word32Slice) Append(x uint32) {
n, m := p.v.Len(), p.v.Cap()
// grow updates the slice s in place to make it one element longer.
// s must be addressable.
// Returns the (addressable) new element.
func grow(s reflect.Value) reflect.Value {
n, m := s.Len(), s.Cap()
if n < m {
p.v.SetLen(n + 1)
s.SetLen(n + 1)
} else {
t := p.v.Type().Elem()
p.v.Set(reflect.Append(p.v, reflect.Zero(t)))
s.Set(reflect.Append(s, reflect.Zero(s.Type().Elem())))
}
elem := p.v.Index(n)
switch elem.Kind() {
case reflect.Int32:
elem.SetInt(int64(int32(x)))
case reflect.Uint32:
elem.SetUint(uint64(x))
case reflect.Float32:
elem.SetFloat(float64(math.Float32frombits(x)))
return s.Index(n)
}
func (p pointer) toInt64() *int64 {
return p.v.Interface().(*int64)
}
func (p pointer) toInt64Ptr() **int64 {
return p.v.Interface().(**int64)
}
func (p pointer) toInt64Slice() *[]int64 {
return p.v.Interface().(*[]int64)
}
var int32ptr = reflect.TypeOf((*int32)(nil))
func (p pointer) toInt32() *int32 {
return p.v.Convert(int32ptr).Interface().(*int32)
}
// The toInt32Ptr/Slice methods don't work because of enums.
// Instead, we must use set/get methods for the int32ptr/slice case.
/*
func (p pointer) toInt32Ptr() **int32 {
return p.v.Interface().(**int32)
}
func (p pointer) toInt32Slice() *[]int32 {
return p.v.Interface().(*[]int32)
}
*/
func (p pointer) getInt32Ptr() *int32 {
if p.v.Type().Elem().Elem() == reflect.TypeOf(int32(0)) {
// raw int32 type
return p.v.Elem().Interface().(*int32)
}
// an enum
return p.v.Elem().Convert(int32PtrType).Interface().(*int32)
}
func (p pointer) setInt32Ptr(v int32) {
// Allocate value in a *int32. Possibly convert that to a *enum.
// Then assign it to a **int32 or **enum.
// Note: we can convert *int32 to *enum, but we can't convert
// **int32 to **enum!
p.v.Elem().Set(reflect.ValueOf(&v).Convert(p.v.Type().Elem()))
}
func (p word32Slice) Len() int {
return p.v.Len()
}
func (p word32Slice) Index(i int) uint32 {
elem := p.v.Index(i)
switch elem.Kind() {
case reflect.Int32:
return uint32(elem.Int())
case reflect.Uint32:
return uint32(elem.Uint())
case reflect.Float32:
return math.Float32bits(float32(elem.Float()))
// getInt32Slice copies []int32 from p as a new slice.
// This behavior differs from the implementation in pointer_unsafe.go.
func (p pointer) getInt32Slice() []int32 {
if p.v.Type().Elem().Elem() == reflect.TypeOf(int32(0)) {
// raw int32 type
return p.v.Elem().Interface().([]int32)
}
panic("unreachable")
// an enum
// Allocate a []int32, then assign []enum's values into it.
// Note: we can't convert []enum to []int32.
slice := p.v.Elem()
s := make([]int32, slice.Len())
for i := 0; i < slice.Len(); i++ {
s[i] = int32(slice.Index(i).Int())
}
return s
}
// Word32Slice returns a reference to a []int32, []uint32, []float32, or []enum field in the struct.
func structPointer_Word32Slice(p structPointer, f field) word32Slice {
return word32Slice{structPointer_field(p, f)}
}
// word64 is like word32 but for 64-bit values.
type word64 struct {
v reflect.Value
}
func word64_Set(p word64, o *Buffer, x uint64) {
t := p.v.Type().Elem()
switch t {
case int64Type:
if len(o.int64s) == 0 {
o.int64s = make([]int64, uint64PoolSize)
}
o.int64s[0] = int64(x)
p.v.Set(reflect.ValueOf(&o.int64s[0]))
o.int64s = o.int64s[1:]
return
case uint64Type:
if len(o.uint64s) == 0 {
o.uint64s = make([]uint64, uint64PoolSize)
}
o.uint64s[0] = x
p.v.Set(reflect.ValueOf(&o.uint64s[0]))
o.uint64s = o.uint64s[1:]
return
case float64Type:
if len(o.float64s) == 0 {
o.float64s = make([]float64, uint64PoolSize)
}
o.float64s[0] = math.Float64frombits(x)
p.v.Set(reflect.ValueOf(&o.float64s[0]))
o.float64s = o.float64s[1:]
// setInt32Slice copies []int32 into p as a new slice.
// This behavior differs from the implementation in pointer_unsafe.go.
func (p pointer) setInt32Slice(v []int32) {
if p.v.Type().Elem().Elem() == reflect.TypeOf(int32(0)) {
// raw int32 type
p.v.Elem().Set(reflect.ValueOf(v))
return
}
panic("unreachable")
}
func word64_IsNil(p word64) bool {
return p.v.IsNil()
}
func word64_Get(p word64) uint64 {
elem := p.v.Elem()
switch elem.Kind() {
case reflect.Int64:
return uint64(elem.Int())
case reflect.Uint64:
return elem.Uint()
case reflect.Float64:
return math.Float64bits(elem.Float())
// an enum
// Allocate a []enum, then assign []int32's values into it.
// Note: we can't convert []enum to []int32.
slice := reflect.MakeSlice(p.v.Type().Elem(), len(v), cap(v))
for i, x := range v {
slice.Index(i).SetInt(int64(x))
}
panic("unreachable")
p.v.Elem().Set(slice)
}
func (p pointer) appendInt32Slice(v int32) {
grow(p.v.Elem()).SetInt(int64(v))
}
func structPointer_Word64(p structPointer, f field) word64 {
return word64{structPointer_field(p, f)}
func (p pointer) toUint64() *uint64 {
return p.v.Interface().(*uint64)
}
func (p pointer) toUint64Ptr() **uint64 {
return p.v.Interface().(**uint64)
}
func (p pointer) toUint64Slice() *[]uint64 {
return p.v.Interface().(*[]uint64)
}
func (p pointer) toUint32() *uint32 {
return p.v.Interface().(*uint32)
}
func (p pointer) toUint32Ptr() **uint32 {
return p.v.Interface().(**uint32)
}
func (p pointer) toUint32Slice() *[]uint32 {
return p.v.Interface().(*[]uint32)
}
func (p pointer) toBool() *bool {
return p.v.Interface().(*bool)
}
func (p pointer) toBoolPtr() **bool {
return p.v.Interface().(**bool)
}
func (p pointer) toBoolSlice() *[]bool {
return p.v.Interface().(*[]bool)
}
func (p pointer) toFloat64() *float64 {
return p.v.Interface().(*float64)
}
func (p pointer) toFloat64Ptr() **float64 {
return p.v.Interface().(**float64)
}
func (p pointer) toFloat64Slice() *[]float64 {
return p.v.Interface().(*[]float64)
}
func (p pointer) toFloat32() *float32 {
return p.v.Interface().(*float32)
}
func (p pointer) toFloat32Ptr() **float32 {
return p.v.Interface().(**float32)
}
func (p pointer) toFloat32Slice() *[]float32 {
return p.v.Interface().(*[]float32)
}
func (p pointer) toString() *string {
return p.v.Interface().(*string)
}
func (p pointer) toStringPtr() **string {
return p.v.Interface().(**string)
}
func (p pointer) toStringSlice() *[]string {
return p.v.Interface().(*[]string)
}
func (p pointer) toBytes() *[]byte {
return p.v.Interface().(*[]byte)
}
func (p pointer) toBytesSlice() *[][]byte {
return p.v.Interface().(*[][]byte)
}
func (p pointer) toExtensions() *XXX_InternalExtensions {
return p.v.Interface().(*XXX_InternalExtensions)
}
func (p pointer) toOldExtensions() *map[int32]Extension {
return p.v.Interface().(*map[int32]Extension)
}
func (p pointer) getPointer() pointer {
return pointer{v: p.v.Elem()}
}
func (p pointer) setPointer(q pointer) {
p.v.Elem().Set(q.v)
}
func (p pointer) appendPointer(q pointer) {
grow(p.v.Elem()).Set(q.v)
}
// word64Val is like word32Val but for 64-bit values.
type word64Val struct {
v reflect.Value
// getPointerSlice copies []*T from p as a new []pointer.
// This behavior differs from the implementation in pointer_unsafe.go.
func (p pointer) getPointerSlice() []pointer {
if p.v.IsNil() {
return nil
}
n := p.v.Elem().Len()
s := make([]pointer, n)
for i := 0; i < n; i++ {
s[i] = pointer{v: p.v.Elem().Index(i)}
}
return s
}
func word64Val_Set(p word64Val, o *Buffer, x uint64) {
switch p.v.Type() {
case int64Type:
p.v.SetInt(int64(x))
return
case uint64Type:
p.v.SetUint(x)
return
case float64Type:
p.v.SetFloat(math.Float64frombits(x))
// setPointerSlice copies []pointer into p as a new []*T.
// This behavior differs from the implementation in pointer_unsafe.go.
func (p pointer) setPointerSlice(v []pointer) {
if v == nil {
p.v.Elem().Set(reflect.New(p.v.Elem().Type()).Elem())
return
}
panic("unreachable")
}
func word64Val_Get(p word64Val) uint64 {
elem := p.v
switch elem.Kind() {
case reflect.Int64:
return uint64(elem.Int())
case reflect.Uint64:
return elem.Uint()
case reflect.Float64:
return math.Float64bits(elem.Float())
s := reflect.MakeSlice(p.v.Elem().Type(), 0, len(v))
for _, p := range v {
s = reflect.Append(s, p.v)
}
panic("unreachable")
p.v.Elem().Set(s)
}
func structPointer_Word64Val(p structPointer, f field) word64Val {
return word64Val{structPointer_field(p, f)}
}
type word64Slice struct {
v reflect.Value
}
func (p word64Slice) Append(x uint64) {
n, m := p.v.Len(), p.v.Cap()
if n < m {
p.v.SetLen(n + 1)
} else {
t := p.v.Type().Elem()
p.v.Set(reflect.Append(p.v, reflect.Zero(t)))
}
elem := p.v.Index(n)
switch elem.Kind() {
case reflect.Int64:
elem.SetInt(int64(int64(x)))
case reflect.Uint64:
elem.SetUint(uint64(x))
case reflect.Float64:
elem.SetFloat(float64(math.Float64frombits(x)))
// getInterfacePointer returns a pointer that points to the
// interface data of the interface pointed by p.
func (p pointer) getInterfacePointer() pointer {
if p.v.Elem().IsNil() {
return pointer{v: p.v.Elem()}
}
return pointer{v: p.v.Elem().Elem().Elem().Field(0).Addr()} // *interface -> interface -> *struct -> struct
}
func (p word64Slice) Len() int {
return p.v.Len()
func (p pointer) asPointerTo(t reflect.Type) reflect.Value {
// TODO: check that p.v.Type().Elem() == t?
return p.v
}
func (p word64Slice) Index(i int) uint64 {
elem := p.v.Index(i)
switch elem.Kind() {
case reflect.Int64:
return uint64(elem.Int())
case reflect.Uint64:
return uint64(elem.Uint())
case reflect.Float64:
return math.Float64bits(float64(elem.Float()))
}
panic("unreachable")
func atomicLoadUnmarshalInfo(p **unmarshalInfo) *unmarshalInfo {
atomicLock.Lock()
defer atomicLock.Unlock()
return *p
}
func atomicStoreUnmarshalInfo(p **unmarshalInfo, v *unmarshalInfo) {
atomicLock.Lock()
defer atomicLock.Unlock()
*p = v
}
func atomicLoadMarshalInfo(p **marshalInfo) *marshalInfo {
atomicLock.Lock()
defer atomicLock.Unlock()
return *p
}
func atomicStoreMarshalInfo(p **marshalInfo, v *marshalInfo) {
atomicLock.Lock()
defer atomicLock.Unlock()
*p = v
}
func atomicLoadMergeInfo(p **mergeInfo) *mergeInfo {
atomicLock.Lock()
defer atomicLock.Unlock()
return *p
}
func atomicStoreMergeInfo(p **mergeInfo, v *mergeInfo) {
atomicLock.Lock()
defer atomicLock.Unlock()
*p = v
}
func atomicLoadDiscardInfo(p **discardInfo) *discardInfo {
atomicLock.Lock()
defer atomicLock.Unlock()
return *p
}
func atomicStoreDiscardInfo(p **discardInfo, v *discardInfo) {
atomicLock.Lock()
defer atomicLock.Unlock()
*p = v
}
func structPointer_Word64Slice(p structPointer, f field) word64Slice {
return word64Slice{structPointer_field(p, f)}
}
var atomicLock sync.Mutex

View File

@ -29,7 +29,7 @@
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// +build !appengine,!js
// +build !purego,!appengine,!js
// This file contains the implementation of the proto field accesses using package unsafe.
@ -37,38 +37,13 @@ package proto
import (
"reflect"
"sync/atomic"
"unsafe"
)
// NOTE: These type_Foo functions would more idiomatically be methods,
// but Go does not allow methods on pointer types, and we must preserve
// some pointer type for the garbage collector. We use these
// funcs with clunky names as our poor approximation to methods.
//
// An alternative would be
// type structPointer struct { p unsafe.Pointer }
// but that does not registerize as well.
const unsafeAllowed = true
// A structPointer is a pointer to a struct.
type structPointer unsafe.Pointer
// toStructPointer returns a structPointer equivalent to the given reflect value.
func toStructPointer(v reflect.Value) structPointer {
return structPointer(unsafe.Pointer(v.Pointer()))
}
// IsNil reports whether p is nil.
func structPointer_IsNil(p structPointer) bool {
return p == nil
}
// Interface returns the struct pointer, assumed to have element type t,
// as an interface value.
func structPointer_Interface(p structPointer, t reflect.Type) interface{} {
return reflect.NewAt(t, unsafe.Pointer(p)).Interface()
}
// A field identifies a field in a struct, accessible from a structPointer.
// A field identifies a field in a struct, accessible from a pointer.
// In this implementation, a field is identified by its byte offset from the start of the struct.
type field uintptr
@ -80,191 +55,254 @@ func toField(f *reflect.StructField) field {
// invalidField is an invalid field identifier.
const invalidField = ^field(0)
// zeroField is a noop when calling pointer.offset.
const zeroField = field(0)
// IsValid reports whether the field identifier is valid.
func (f field) IsValid() bool {
return f != ^field(0)
return f != invalidField
}
// Bytes returns the address of a []byte field in the struct.
func structPointer_Bytes(p structPointer, f field) *[]byte {
return (*[]byte)(unsafe.Pointer(uintptr(p) + uintptr(f)))
// The pointer type below is for the new table-driven encoder/decoder.
// The implementation here uses unsafe.Pointer to create a generic pointer.
// In pointer_reflect.go we use reflect instead of unsafe to implement
// the same (but slower) interface.
type pointer struct {
p unsafe.Pointer
}
// BytesSlice returns the address of a [][]byte field in the struct.
func structPointer_BytesSlice(p structPointer, f field) *[][]byte {
return (*[][]byte)(unsafe.Pointer(uintptr(p) + uintptr(f)))
// size of pointer
var ptrSize = unsafe.Sizeof(uintptr(0))
// toPointer converts an interface of pointer type to a pointer
// that points to the same target.
func toPointer(i *Message) pointer {
// Super-tricky - read pointer out of data word of interface value.
// Saves ~25ns over the equivalent:
// return valToPointer(reflect.ValueOf(*i))
return pointer{p: (*[2]unsafe.Pointer)(unsafe.Pointer(i))[1]}
}
// Bool returns the address of a *bool field in the struct.
func structPointer_Bool(p structPointer, f field) **bool {
return (**bool)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// BoolVal returns the address of a bool field in the struct.
func structPointer_BoolVal(p structPointer, f field) *bool {
return (*bool)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// BoolSlice returns the address of a []bool field in the struct.
func structPointer_BoolSlice(p structPointer, f field) *[]bool {
return (*[]bool)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// String returns the address of a *string field in the struct.
func structPointer_String(p structPointer, f field) **string {
return (**string)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// StringVal returns the address of a string field in the struct.
func structPointer_StringVal(p structPointer, f field) *string {
return (*string)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// StringSlice returns the address of a []string field in the struct.
func structPointer_StringSlice(p structPointer, f field) *[]string {
return (*[]string)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// ExtMap returns the address of an extension map field in the struct.
func structPointer_Extensions(p structPointer, f field) *XXX_InternalExtensions {
return (*XXX_InternalExtensions)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
func structPointer_ExtMap(p structPointer, f field) *map[int32]Extension {
return (*map[int32]Extension)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// NewAt returns the reflect.Value for a pointer to a field in the struct.
func structPointer_NewAt(p structPointer, f field, typ reflect.Type) reflect.Value {
return reflect.NewAt(typ, unsafe.Pointer(uintptr(p)+uintptr(f)))
}
// SetStructPointer writes a *struct field in the struct.
func structPointer_SetStructPointer(p structPointer, f field, q structPointer) {
*(*structPointer)(unsafe.Pointer(uintptr(p) + uintptr(f))) = q
}
// GetStructPointer reads a *struct field in the struct.
func structPointer_GetStructPointer(p structPointer, f field) structPointer {
return *(*structPointer)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// StructPointerSlice the address of a []*struct field in the struct.
func structPointer_StructPointerSlice(p structPointer, f field) *structPointerSlice {
return (*structPointerSlice)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// A structPointerSlice represents a slice of pointers to structs (themselves submessages or groups).
type structPointerSlice []structPointer
func (v *structPointerSlice) Len() int { return len(*v) }
func (v *structPointerSlice) Index(i int) structPointer { return (*v)[i] }
func (v *structPointerSlice) Append(p structPointer) { *v = append(*v, p) }
// A word32 is the address of a "pointer to 32-bit value" field.
type word32 **uint32
// IsNil reports whether *v is nil.
func word32_IsNil(p word32) bool {
return *p == nil
}
// Set sets *v to point at a newly allocated word set to x.
func word32_Set(p word32, o *Buffer, x uint32) {
if len(o.uint32s) == 0 {
o.uint32s = make([]uint32, uint32PoolSize)
// toAddrPointer converts an interface to a pointer that points to
// the interface data.
func toAddrPointer(i *interface{}, isptr bool) pointer {
// Super-tricky - read or get the address of data word of interface value.
if isptr {
// The interface is of pointer type, thus it is a direct interface.
// The data word is the pointer data itself. We take its address.
return pointer{p: unsafe.Pointer(uintptr(unsafe.Pointer(i)) + ptrSize)}
}
o.uint32s[0] = x
*p = &o.uint32s[0]
o.uint32s = o.uint32s[1:]
// The interface is not of pointer type. The data word is the pointer
// to the data.
return pointer{p: (*[2]unsafe.Pointer)(unsafe.Pointer(i))[1]}
}
// Get gets the value pointed at by *v.
func word32_Get(p word32) uint32 {
return **p
// valToPointer converts v to a pointer. v must be of pointer type.
func valToPointer(v reflect.Value) pointer {
return pointer{p: unsafe.Pointer(v.Pointer())}
}
// Word32 returns the address of a *int32, *uint32, *float32, or *enum field in the struct.
func structPointer_Word32(p structPointer, f field) word32 {
return word32((**uint32)(unsafe.Pointer(uintptr(p) + uintptr(f))))
// offset converts from a pointer to a structure to a pointer to
// one of its fields.
func (p pointer) offset(f field) pointer {
// For safety, we should panic if !f.IsValid, however calling panic causes
// this to no longer be inlineable, which is a serious performance cost.
/*
if !f.IsValid() {
panic("invalid field")
}
*/
return pointer{p: unsafe.Pointer(uintptr(p.p) + uintptr(f))}
}
// A word32Val is the address of a 32-bit value field.
type word32Val *uint32
// Set sets *p to x.
func word32Val_Set(p word32Val, x uint32) {
*p = x
func (p pointer) isNil() bool {
return p.p == nil
}
// Get gets the value pointed at by p.
func word32Val_Get(p word32Val) uint32 {
return *p
func (p pointer) toInt64() *int64 {
return (*int64)(p.p)
}
func (p pointer) toInt64Ptr() **int64 {
return (**int64)(p.p)
}
func (p pointer) toInt64Slice() *[]int64 {
return (*[]int64)(p.p)
}
func (p pointer) toInt32() *int32 {
return (*int32)(p.p)
}
// Word32Val returns the address of a *int32, *uint32, *float32, or *enum field in the struct.
func structPointer_Word32Val(p structPointer, f field) word32Val {
return word32Val((*uint32)(unsafe.Pointer(uintptr(p) + uintptr(f))))
}
// A word32Slice is a slice of 32-bit values.
type word32Slice []uint32
func (v *word32Slice) Append(x uint32) { *v = append(*v, x) }
func (v *word32Slice) Len() int { return len(*v) }
func (v *word32Slice) Index(i int) uint32 { return (*v)[i] }
// Word32Slice returns the address of a []int32, []uint32, []float32, or []enum field in the struct.
func structPointer_Word32Slice(p structPointer, f field) *word32Slice {
return (*word32Slice)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// word64 is like word32 but for 64-bit values.
type word64 **uint64
func word64_Set(p word64, o *Buffer, x uint64) {
if len(o.uint64s) == 0 {
o.uint64s = make([]uint64, uint64PoolSize)
// See pointer_reflect.go for why toInt32Ptr/Slice doesn't exist.
/*
func (p pointer) toInt32Ptr() **int32 {
return (**int32)(p.p)
}
o.uint64s[0] = x
*p = &o.uint64s[0]
o.uint64s = o.uint64s[1:]
func (p pointer) toInt32Slice() *[]int32 {
return (*[]int32)(p.p)
}
*/
func (p pointer) getInt32Ptr() *int32 {
return *(**int32)(p.p)
}
func (p pointer) setInt32Ptr(v int32) {
*(**int32)(p.p) = &v
}
func word64_IsNil(p word64) bool {
return *p == nil
// getInt32Slice loads a []int32 from p.
// The value returned is aliased with the original slice.
// This behavior differs from the implementation in pointer_reflect.go.
func (p pointer) getInt32Slice() []int32 {
return *(*[]int32)(p.p)
}
func word64_Get(p word64) uint64 {
return **p
// setInt32Slice stores a []int32 to p.
// The value set is aliased with the input slice.
// This behavior differs from the implementation in pointer_reflect.go.
func (p pointer) setInt32Slice(v []int32) {
*(*[]int32)(p.p) = v
}
func structPointer_Word64(p structPointer, f field) word64 {
return word64((**uint64)(unsafe.Pointer(uintptr(p) + uintptr(f))))
// TODO: Can we get rid of appendInt32Slice and use setInt32Slice instead?
func (p pointer) appendInt32Slice(v int32) {
s := (*[]int32)(p.p)
*s = append(*s, v)
}
// word64Val is like word32Val but for 64-bit values.
type word64Val *uint64
func word64Val_Set(p word64Val, o *Buffer, x uint64) {
*p = x
func (p pointer) toUint64() *uint64 {
return (*uint64)(p.p)
}
func (p pointer) toUint64Ptr() **uint64 {
return (**uint64)(p.p)
}
func (p pointer) toUint64Slice() *[]uint64 {
return (*[]uint64)(p.p)
}
func (p pointer) toUint32() *uint32 {
return (*uint32)(p.p)
}
func (p pointer) toUint32Ptr() **uint32 {
return (**uint32)(p.p)
}
func (p pointer) toUint32Slice() *[]uint32 {
return (*[]uint32)(p.p)
}
func (p pointer) toBool() *bool {
return (*bool)(p.p)
}
func (p pointer) toBoolPtr() **bool {
return (**bool)(p.p)
}
func (p pointer) toBoolSlice() *[]bool {
return (*[]bool)(p.p)
}
func (p pointer) toFloat64() *float64 {
return (*float64)(p.p)
}
func (p pointer) toFloat64Ptr() **float64 {
return (**float64)(p.p)
}
func (p pointer) toFloat64Slice() *[]float64 {
return (*[]float64)(p.p)
}
func (p pointer) toFloat32() *float32 {
return (*float32)(p.p)
}
func (p pointer) toFloat32Ptr() **float32 {
return (**float32)(p.p)
}
func (p pointer) toFloat32Slice() *[]float32 {
return (*[]float32)(p.p)
}
func (p pointer) toString() *string {
return (*string)(p.p)
}
func (p pointer) toStringPtr() **string {
return (**string)(p.p)
}
func (p pointer) toStringSlice() *[]string {
return (*[]string)(p.p)
}
func (p pointer) toBytes() *[]byte {
return (*[]byte)(p.p)
}
func (p pointer) toBytesSlice() *[][]byte {
return (*[][]byte)(p.p)
}
func (p pointer) toExtensions() *XXX_InternalExtensions {
return (*XXX_InternalExtensions)(p.p)
}
func (p pointer) toOldExtensions() *map[int32]Extension {
return (*map[int32]Extension)(p.p)
}
func word64Val_Get(p word64Val) uint64 {
return *p
// getPointerSlice loads []*T from p as a []pointer.
// The value returned is aliased with the original slice.
// This behavior differs from the implementation in pointer_reflect.go.
func (p pointer) getPointerSlice() []pointer {
// Super-tricky - p should point to a []*T where T is a
// message type. We load it as []pointer.
return *(*[]pointer)(p.p)
}
func structPointer_Word64Val(p structPointer, f field) word64Val {
return word64Val((*uint64)(unsafe.Pointer(uintptr(p) + uintptr(f))))
// setPointerSlice stores []pointer into p as a []*T.
// The value set is aliased with the input slice.
// This behavior differs from the implementation in pointer_reflect.go.
func (p pointer) setPointerSlice(v []pointer) {
// Super-tricky - p should point to a []*T where T is a
// message type. We store it as []pointer.
*(*[]pointer)(p.p) = v
}
// word64Slice is like word32Slice but for 64-bit values.
type word64Slice []uint64
func (v *word64Slice) Append(x uint64) { *v = append(*v, x) }
func (v *word64Slice) Len() int { return len(*v) }
func (v *word64Slice) Index(i int) uint64 { return (*v)[i] }
func structPointer_Word64Slice(p structPointer, f field) *word64Slice {
return (*word64Slice)(unsafe.Pointer(uintptr(p) + uintptr(f)))
// getPointer loads the pointer at p and returns it.
func (p pointer) getPointer() pointer {
return pointer{p: *(*unsafe.Pointer)(p.p)}
}
// setPointer stores the pointer q at p.
func (p pointer) setPointer(q pointer) {
*(*unsafe.Pointer)(p.p) = q.p
}
// append q to the slice pointed to by p.
func (p pointer) appendPointer(q pointer) {
s := (*[]unsafe.Pointer)(p.p)
*s = append(*s, q.p)
}
// getInterfacePointer returns a pointer that points to the
// interface data of the interface pointed by p.
func (p pointer) getInterfacePointer() pointer {
// Super-tricky - read pointer out of data word of interface value.
return pointer{p: (*(*[2]unsafe.Pointer)(p.p))[1]}
}
// asPointerTo returns a reflect.Value that is a pointer to an
// object of type t stored at p.
func (p pointer) asPointerTo(t reflect.Type) reflect.Value {
return reflect.NewAt(t, p.p)
}
func atomicLoadUnmarshalInfo(p **unmarshalInfo) *unmarshalInfo {
return (*unmarshalInfo)(atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(p))))
}
func atomicStoreUnmarshalInfo(p **unmarshalInfo, v *unmarshalInfo) {
atomic.StorePointer((*unsafe.Pointer)(unsafe.Pointer(p)), unsafe.Pointer(v))
}
func atomicLoadMarshalInfo(p **marshalInfo) *marshalInfo {
return (*marshalInfo)(atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(p))))
}
func atomicStoreMarshalInfo(p **marshalInfo, v *marshalInfo) {
atomic.StorePointer((*unsafe.Pointer)(unsafe.Pointer(p)), unsafe.Pointer(v))
}
func atomicLoadMergeInfo(p **mergeInfo) *mergeInfo {
return (*mergeInfo)(atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(p))))
}
func atomicStoreMergeInfo(p **mergeInfo, v *mergeInfo) {
atomic.StorePointer((*unsafe.Pointer)(unsafe.Pointer(p)), unsafe.Pointer(v))
}
func atomicLoadDiscardInfo(p **discardInfo) *discardInfo {
return (*discardInfo)(atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(p))))
}
func atomicStoreDiscardInfo(p **discardInfo, v *discardInfo) {
atomic.StorePointer((*unsafe.Pointer)(unsafe.Pointer(p)), unsafe.Pointer(v))
}

View File

@ -58,42 +58,6 @@ const (
WireFixed32 = 5
)
const startSize = 10 // initial slice/string sizes
// Encoders are defined in encode.go
// An encoder outputs the full representation of a field, including its
// tag and encoder type.
type encoder func(p *Buffer, prop *Properties, base structPointer) error
// A valueEncoder encodes a single integer in a particular encoding.
type valueEncoder func(o *Buffer, x uint64) error
// Sizers are defined in encode.go
// A sizer returns the encoded size of a field, including its tag and encoder
// type.
type sizer func(prop *Properties, base structPointer) int
// A valueSizer returns the encoded size of a single integer in a particular
// encoding.
type valueSizer func(x uint64) int
// Decoders are defined in decode.go
// A decoder creates a value from its wire representation.
// Unrecognized subelements are saved in unrec.
type decoder func(p *Buffer, prop *Properties, base structPointer) error
// A valueDecoder decodes a single integer in a particular encoding.
type valueDecoder func(o *Buffer) (x uint64, err error)
// A oneofMarshaler does the marshaling for all oneof fields in a message.
type oneofMarshaler func(Message, *Buffer) error
// A oneofUnmarshaler does the unmarshaling for a oneof field in a message.
type oneofUnmarshaler func(Message, int, int, *Buffer) (bool, error)
// A oneofSizer does the sizing for all oneof fields in a message.
type oneofSizer func(Message) int
// tagMap is an optimization over map[int]int for typical protocol buffer
// use-cases. Encoded protocol buffers are often in tag order with small tag
// numbers.
@ -140,13 +104,6 @@ type StructProperties struct {
decoderTags tagMap // map from proto tag to struct field number
decoderOrigNames map[string]int // map from original name to struct field number
order []int // list of struct field numbers in tag order
unrecField field // field id of the XXX_unrecognized []byte field
extendable bool // is this an extendable proto
oneofMarshaler oneofMarshaler
oneofUnmarshaler oneofUnmarshaler
oneofSizer oneofSizer
stype reflect.Type
// OneofTypes contains information about the oneof fields in this message.
// It is keyed by the original name of a field.
@ -187,36 +144,19 @@ type Properties struct {
Default string // default value
HasDefault bool // whether an explicit default was provided
def_uint64 uint64
enc encoder
valEnc valueEncoder // set for bool and numeric types only
field field
tagcode []byte // encoding of EncodeVarint((Tag<<3)|WireType)
tagbuf [8]byte
stype reflect.Type // set for struct types only
sprop *StructProperties // set for struct types only
isMarshaler bool
isUnmarshaler bool
stype reflect.Type // set for struct types only
sprop *StructProperties // set for struct types only
mtype reflect.Type // set for map types only
mkeyprop *Properties // set for map types only
mvalprop *Properties // set for map types only
size sizer
valSize valueSizer // set for bool and numeric types only
dec decoder
valDec valueDecoder // set for bool and numeric types only
// If this is a packable field, this will be the decoder for the packed version of the field.
packedDec decoder
}
// String formats the properties in the protobuf struct field tag style.
func (p *Properties) String() string {
s := p.Wire
s = ","
s += ","
s += strconv.Itoa(p.Tag)
if p.Required {
s += ",req"
@ -262,29 +202,14 @@ func (p *Properties) Parse(s string) {
switch p.Wire {
case "varint":
p.WireType = WireVarint
p.valEnc = (*Buffer).EncodeVarint
p.valDec = (*Buffer).DecodeVarint
p.valSize = sizeVarint
case "fixed32":
p.WireType = WireFixed32
p.valEnc = (*Buffer).EncodeFixed32
p.valDec = (*Buffer).DecodeFixed32
p.valSize = sizeFixed32
case "fixed64":
p.WireType = WireFixed64
p.valEnc = (*Buffer).EncodeFixed64
p.valDec = (*Buffer).DecodeFixed64
p.valSize = sizeFixed64
case "zigzag32":
p.WireType = WireVarint
p.valEnc = (*Buffer).EncodeZigzag32
p.valDec = (*Buffer).DecodeZigzag32
p.valSize = sizeZigzag32
case "zigzag64":
p.WireType = WireVarint
p.valEnc = (*Buffer).EncodeZigzag64
p.valDec = (*Buffer).DecodeZigzag64
p.valSize = sizeZigzag64
case "bytes", "group":
p.WireType = WireBytes
// no numeric converter for non-numeric types
@ -299,6 +224,7 @@ func (p *Properties) Parse(s string) {
return
}
outer:
for i := 2; i < len(fields); i++ {
f := fields[i]
switch {
@ -326,229 +252,28 @@ func (p *Properties) Parse(s string) {
if i+1 < len(fields) {
// Commas aren't escaped, and def is always last.
p.Default += "," + strings.Join(fields[i+1:], ",")
break
break outer
}
}
}
}
func logNoSliceEnc(t1, t2 reflect.Type) {
fmt.Fprintf(os.Stderr, "proto: no slice oenc for %T = []%T\n", t1, t2)
}
var protoMessageType = reflect.TypeOf((*Message)(nil)).Elem()
// Initialize the fields for encoding and decoding.
func (p *Properties) setEncAndDec(typ reflect.Type, f *reflect.StructField, lockGetProp bool) {
p.enc = nil
p.dec = nil
p.size = nil
// setFieldProps initializes the field properties for submessages and maps.
func (p *Properties) setFieldProps(typ reflect.Type, f *reflect.StructField, lockGetProp bool) {
switch t1 := typ; t1.Kind() {
default:
fmt.Fprintf(os.Stderr, "proto: no coders for %v\n", t1)
// proto3 scalar types
case reflect.Bool:
p.enc = (*Buffer).enc_proto3_bool
p.dec = (*Buffer).dec_proto3_bool
p.size = size_proto3_bool
case reflect.Int32:
p.enc = (*Buffer).enc_proto3_int32
p.dec = (*Buffer).dec_proto3_int32
p.size = size_proto3_int32
case reflect.Uint32:
p.enc = (*Buffer).enc_proto3_uint32
p.dec = (*Buffer).dec_proto3_int32 // can reuse
p.size = size_proto3_uint32
case reflect.Int64, reflect.Uint64:
p.enc = (*Buffer).enc_proto3_int64
p.dec = (*Buffer).dec_proto3_int64
p.size = size_proto3_int64
case reflect.Float32:
p.enc = (*Buffer).enc_proto3_uint32 // can just treat them as bits
p.dec = (*Buffer).dec_proto3_int32
p.size = size_proto3_uint32
case reflect.Float64:
p.enc = (*Buffer).enc_proto3_int64 // can just treat them as bits
p.dec = (*Buffer).dec_proto3_int64
p.size = size_proto3_int64
case reflect.String:
p.enc = (*Buffer).enc_proto3_string
p.dec = (*Buffer).dec_proto3_string
p.size = size_proto3_string
case reflect.Ptr:
switch t2 := t1.Elem(); t2.Kind() {
default:
fmt.Fprintf(os.Stderr, "proto: no encoder function for %v -> %v\n", t1, t2)
break
case reflect.Bool:
p.enc = (*Buffer).enc_bool
p.dec = (*Buffer).dec_bool
p.size = size_bool
case reflect.Int32:
p.enc = (*Buffer).enc_int32
p.dec = (*Buffer).dec_int32
p.size = size_int32
case reflect.Uint32:
p.enc = (*Buffer).enc_uint32
p.dec = (*Buffer).dec_int32 // can reuse
p.size = size_uint32
case reflect.Int64, reflect.Uint64:
p.enc = (*Buffer).enc_int64
p.dec = (*Buffer).dec_int64
p.size = size_int64
case reflect.Float32:
p.enc = (*Buffer).enc_uint32 // can just treat them as bits
p.dec = (*Buffer).dec_int32
p.size = size_uint32
case reflect.Float64:
p.enc = (*Buffer).enc_int64 // can just treat them as bits
p.dec = (*Buffer).dec_int64
p.size = size_int64
case reflect.String:
p.enc = (*Buffer).enc_string
p.dec = (*Buffer).dec_string
p.size = size_string
case reflect.Struct:
if t1.Elem().Kind() == reflect.Struct {
p.stype = t1.Elem()
p.isMarshaler = isMarshaler(t1)
p.isUnmarshaler = isUnmarshaler(t1)
if p.Wire == "bytes" {
p.enc = (*Buffer).enc_struct_message
p.dec = (*Buffer).dec_struct_message
p.size = size_struct_message
} else {
p.enc = (*Buffer).enc_struct_group
p.dec = (*Buffer).dec_struct_group
p.size = size_struct_group
}
}
case reflect.Slice:
switch t2 := t1.Elem(); t2.Kind() {
default:
logNoSliceEnc(t1, t2)
break
case reflect.Bool:
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_bool
p.size = size_slice_packed_bool
} else {
p.enc = (*Buffer).enc_slice_bool
p.size = size_slice_bool
}
p.dec = (*Buffer).dec_slice_bool
p.packedDec = (*Buffer).dec_slice_packed_bool
case reflect.Int32:
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_int32
p.size = size_slice_packed_int32
} else {
p.enc = (*Buffer).enc_slice_int32
p.size = size_slice_int32
}
p.dec = (*Buffer).dec_slice_int32
p.packedDec = (*Buffer).dec_slice_packed_int32
case reflect.Uint32:
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_uint32
p.size = size_slice_packed_uint32
} else {
p.enc = (*Buffer).enc_slice_uint32
p.size = size_slice_uint32
}
p.dec = (*Buffer).dec_slice_int32
p.packedDec = (*Buffer).dec_slice_packed_int32
case reflect.Int64, reflect.Uint64:
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_int64
p.size = size_slice_packed_int64
} else {
p.enc = (*Buffer).enc_slice_int64
p.size = size_slice_int64
}
p.dec = (*Buffer).dec_slice_int64
p.packedDec = (*Buffer).dec_slice_packed_int64
case reflect.Uint8:
p.dec = (*Buffer).dec_slice_byte
if p.proto3 {
p.enc = (*Buffer).enc_proto3_slice_byte
p.size = size_proto3_slice_byte
} else {
p.enc = (*Buffer).enc_slice_byte
p.size = size_slice_byte
}
case reflect.Float32, reflect.Float64:
switch t2.Bits() {
case 32:
// can just treat them as bits
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_uint32
p.size = size_slice_packed_uint32
} else {
p.enc = (*Buffer).enc_slice_uint32
p.size = size_slice_uint32
}
p.dec = (*Buffer).dec_slice_int32
p.packedDec = (*Buffer).dec_slice_packed_int32
case 64:
// can just treat them as bits
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_int64
p.size = size_slice_packed_int64
} else {
p.enc = (*Buffer).enc_slice_int64
p.size = size_slice_int64
}
p.dec = (*Buffer).dec_slice_int64
p.packedDec = (*Buffer).dec_slice_packed_int64
default:
logNoSliceEnc(t1, t2)
break
}
case reflect.String:
p.enc = (*Buffer).enc_slice_string
p.dec = (*Buffer).dec_slice_string
p.size = size_slice_string
case reflect.Ptr:
switch t3 := t2.Elem(); t3.Kind() {
default:
fmt.Fprintf(os.Stderr, "proto: no ptr oenc for %T -> %T -> %T\n", t1, t2, t3)
break
case reflect.Struct:
p.stype = t2.Elem()
p.isMarshaler = isMarshaler(t2)
p.isUnmarshaler = isUnmarshaler(t2)
if p.Wire == "bytes" {
p.enc = (*Buffer).enc_slice_struct_message
p.dec = (*Buffer).dec_slice_struct_message
p.size = size_slice_struct_message
} else {
p.enc = (*Buffer).enc_slice_struct_group
p.dec = (*Buffer).dec_slice_struct_group
p.size = size_slice_struct_group
}
}
case reflect.Slice:
switch t2.Elem().Kind() {
default:
fmt.Fprintf(os.Stderr, "proto: no slice elem oenc for %T -> %T -> %T\n", t1, t2, t2.Elem())
break
case reflect.Uint8:
p.enc = (*Buffer).enc_slice_slice_byte
p.dec = (*Buffer).dec_slice_slice_byte
p.size = size_slice_slice_byte
}
if t2 := t1.Elem(); t2.Kind() == reflect.Ptr && t2.Elem().Kind() == reflect.Struct {
p.stype = t2.Elem()
}
case reflect.Map:
p.enc = (*Buffer).enc_new_map
p.dec = (*Buffer).dec_new_map
p.size = size_new_map
p.mtype = t1
p.mkeyprop = &Properties{}
p.mkeyprop.init(reflect.PtrTo(p.mtype.Key()), "Key", f.Tag.Get("protobuf_key"), nil, lockGetProp)
@ -562,20 +287,6 @@ func (p *Properties) setEncAndDec(typ reflect.Type, f *reflect.StructField, lock
p.mvalprop.init(vtype, "Value", f.Tag.Get("protobuf_val"), nil, lockGetProp)
}
// precalculate tag code
wire := p.WireType
if p.Packed {
wire = WireBytes
}
x := uint32(p.Tag)<<3 | uint32(wire)
i := 0
for i = 0; x > 127; i++ {
p.tagbuf[i] = 0x80 | uint8(x&0x7F)
x >>= 7
}
p.tagbuf[i] = uint8(x)
p.tagcode = p.tagbuf[0 : i+1]
if p.stype != nil {
if lockGetProp {
p.sprop = GetProperties(p.stype)
@ -586,32 +297,9 @@ func (p *Properties) setEncAndDec(typ reflect.Type, f *reflect.StructField, lock
}
var (
marshalerType = reflect.TypeOf((*Marshaler)(nil)).Elem()
unmarshalerType = reflect.TypeOf((*Unmarshaler)(nil)).Elem()
marshalerType = reflect.TypeOf((*Marshaler)(nil)).Elem()
)
// isMarshaler reports whether type t implements Marshaler.
func isMarshaler(t reflect.Type) bool {
// We're checking for (likely) pointer-receiver methods
// so if t is not a pointer, something is very wrong.
// The calls above only invoke isMarshaler on pointer types.
if t.Kind() != reflect.Ptr {
panic("proto: misuse of isMarshaler")
}
return t.Implements(marshalerType)
}
// isUnmarshaler reports whether type t implements Unmarshaler.
func isUnmarshaler(t reflect.Type) bool {
// We're checking for (likely) pointer-receiver methods
// so if t is not a pointer, something is very wrong.
// The calls above only invoke isUnmarshaler on pointer types.
if t.Kind() != reflect.Ptr {
panic("proto: misuse of isUnmarshaler")
}
return t.Implements(unmarshalerType)
}
// Init populates the properties from a protocol buffer struct tag.
func (p *Properties) Init(typ reflect.Type, name, tag string, f *reflect.StructField) {
p.init(typ, name, tag, f, true)
@ -621,14 +309,11 @@ func (p *Properties) init(typ reflect.Type, name, tag string, f *reflect.StructF
// "bytes,49,opt,def=hello!"
p.Name = name
p.OrigName = name
if f != nil {
p.field = toField(f)
}
if tag == "" {
return
}
p.Parse(tag)
p.setEncAndDec(typ, f, lockGetProp)
p.setFieldProps(typ, f, lockGetProp)
}
var (
@ -678,9 +363,6 @@ func getPropertiesLocked(t reflect.Type) *StructProperties {
propertiesMap[t] = prop
// build properties
prop.extendable = reflect.PtrTo(t).Implements(extendableProtoType) ||
reflect.PtrTo(t).Implements(extendableProtoV1Type)
prop.unrecField = invalidField
prop.Prop = make([]*Properties, t.NumField())
prop.order = make([]int, t.NumField())
@ -690,17 +372,6 @@ func getPropertiesLocked(t reflect.Type) *StructProperties {
name := f.Name
p.init(f.Type, name, f.Tag.Get("protobuf"), &f, false)
if f.Name == "XXX_InternalExtensions" { // special case
p.enc = (*Buffer).enc_exts
p.dec = nil // not needed
p.size = size_exts
} else if f.Name == "XXX_extensions" { // special case
p.enc = (*Buffer).enc_map
p.dec = nil // not needed
p.size = size_map
} else if f.Name == "XXX_unrecognized" { // special case
prop.unrecField = toField(&f)
}
oneof := f.Tag.Get("protobuf_oneof") // special case
if oneof != "" {
// Oneof fields don't use the traditional protobuf tag.
@ -715,9 +386,6 @@ func getPropertiesLocked(t reflect.Type) *StructProperties {
}
print("\n")
}
if p.enc == nil && !strings.HasPrefix(f.Name, "XXX_") && oneof == "" {
fmt.Fprintln(os.Stderr, "proto: no encoder for", f.Name, f.Type.String(), "[GetProperties]")
}
}
// Re-order prop.order.
@ -728,8 +396,7 @@ func getPropertiesLocked(t reflect.Type) *StructProperties {
}
if om, ok := reflect.Zero(reflect.PtrTo(t)).Interface().(oneofMessage); ok {
var oots []interface{}
prop.oneofMarshaler, prop.oneofUnmarshaler, prop.oneofSizer, oots = om.XXX_OneofFuncs()
prop.stype = t
_, _, _, oots = om.XXX_OneofFuncs()
// Interpret oneof metadata.
prop.OneofTypes = make(map[string]*OneofProperties)
@ -779,30 +446,6 @@ func getPropertiesLocked(t reflect.Type) *StructProperties {
return prop
}
// Return the Properties object for the x[0]'th field of the structure.
func propByIndex(t reflect.Type, x []int) *Properties {
if len(x) != 1 {
fmt.Fprintf(os.Stderr, "proto: field index dimension %d (not 1) for type %s\n", len(x), t)
return nil
}
prop := GetProperties(t)
return prop.Prop[x[0]]
}
// Get the address and type of a pointer to a struct from an interface.
func getbase(pb Message) (t reflect.Type, b structPointer, err error) {
if pb == nil {
err = ErrNil
return
}
// get the reflect type of the pointer to the struct.
t = reflect.TypeOf(pb)
// get the address of the struct.
value := reflect.ValueOf(pb)
b = toStructPointer(value)
return
}
// A global registry of enum types.
// The generated code will register the generated maps by calling RegisterEnum.
@ -826,20 +469,42 @@ func EnumValueMap(enumType string) map[string]int32 {
// A registry of all linked message types.
// The string is a fully-qualified proto name ("pkg.Message").
var (
protoTypes = make(map[string]reflect.Type)
revProtoTypes = make(map[reflect.Type]string)
protoTypedNils = make(map[string]Message) // a map from proto names to typed nil pointers
protoMapTypes = make(map[string]reflect.Type) // a map from proto names to map types
revProtoTypes = make(map[reflect.Type]string)
)
// RegisterType is called from generated code and maps from the fully qualified
// proto name to the type (pointer to struct) of the protocol buffer.
func RegisterType(x Message, name string) {
if _, ok := protoTypes[name]; ok {
if _, ok := protoTypedNils[name]; ok {
// TODO: Some day, make this a panic.
log.Printf("proto: duplicate proto type registered: %s", name)
return
}
t := reflect.TypeOf(x)
protoTypes[name] = t
if v := reflect.ValueOf(x); v.Kind() == reflect.Ptr && v.Pointer() == 0 {
// Generated code always calls RegisterType with nil x.
// This check is just for extra safety.
protoTypedNils[name] = x
} else {
protoTypedNils[name] = reflect.Zero(t).Interface().(Message)
}
revProtoTypes[t] = name
}
// RegisterMapType is called from generated code and maps from the fully qualified
// proto name to the native map type of the proto map definition.
func RegisterMapType(x interface{}, name string) {
if reflect.TypeOf(x).Kind() != reflect.Map {
panic(fmt.Sprintf("RegisterMapType(%T, %q); want map", x, name))
}
if _, ok := protoMapTypes[name]; ok {
log.Printf("proto: duplicate proto type registered: %s", name)
return
}
t := reflect.TypeOf(x)
protoMapTypes[name] = t
revProtoTypes[t] = name
}
@ -855,7 +520,14 @@ func MessageName(x Message) string {
}
// MessageType returns the message type (pointer to struct) for a named message.
func MessageType(name string) reflect.Type { return protoTypes[name] }
// The type is not guaranteed to implement proto.Message if the name refers to a
// map entry.
func MessageType(name string) reflect.Type {
if t, ok := protoTypedNils[name]; ok {
return reflect.TypeOf(t)
}
return protoMapTypes[name]
}
// A registry of all linked proto files.
var (

2681
vendor/github.com/golang/protobuf/proto/table_marshal.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

654
vendor/github.com/golang/protobuf/proto/table_merge.go generated vendored Normal file
View File

@ -0,0 +1,654 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2016 The Go Authors. All rights reserved.
// https://github.com/golang/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
import (
"fmt"
"reflect"
"strings"
"sync"
"sync/atomic"
)
// Merge merges the src message into dst.
// This assumes that dst and src of the same type and are non-nil.
func (a *InternalMessageInfo) Merge(dst, src Message) {
mi := atomicLoadMergeInfo(&a.merge)
if mi == nil {
mi = getMergeInfo(reflect.TypeOf(dst).Elem())
atomicStoreMergeInfo(&a.merge, mi)
}
mi.merge(toPointer(&dst), toPointer(&src))
}
type mergeInfo struct {
typ reflect.Type
initialized int32 // 0: only typ is valid, 1: everything is valid
lock sync.Mutex
fields []mergeFieldInfo
unrecognized field // Offset of XXX_unrecognized
}
type mergeFieldInfo struct {
field field // Offset of field, guaranteed to be valid
// isPointer reports whether the value in the field is a pointer.
// This is true for the following situations:
// * Pointer to struct
// * Pointer to basic type (proto2 only)
// * Slice (first value in slice header is a pointer)
// * String (first value in string header is a pointer)
isPointer bool
// basicWidth reports the width of the field assuming that it is directly
// embedded in the struct (as is the case for basic types in proto3).
// The possible values are:
// 0: invalid
// 1: bool
// 4: int32, uint32, float32
// 8: int64, uint64, float64
basicWidth int
// Where dst and src are pointers to the types being merged.
merge func(dst, src pointer)
}
var (
mergeInfoMap = map[reflect.Type]*mergeInfo{}
mergeInfoLock sync.Mutex
)
func getMergeInfo(t reflect.Type) *mergeInfo {
mergeInfoLock.Lock()
defer mergeInfoLock.Unlock()
mi := mergeInfoMap[t]
if mi == nil {
mi = &mergeInfo{typ: t}
mergeInfoMap[t] = mi
}
return mi
}
// merge merges src into dst assuming they are both of type *mi.typ.
func (mi *mergeInfo) merge(dst, src pointer) {
if dst.isNil() {
panic("proto: nil destination")
}
if src.isNil() {
return // Nothing to do.
}
if atomic.LoadInt32(&mi.initialized) == 0 {
mi.computeMergeInfo()
}
for _, fi := range mi.fields {
sfp := src.offset(fi.field)
// As an optimization, we can avoid the merge function call cost
// if we know for sure that the source will have no effect
// by checking if it is the zero value.
if unsafeAllowed {
if fi.isPointer && sfp.getPointer().isNil() { // Could be slice or string
continue
}
if fi.basicWidth > 0 {
switch {
case fi.basicWidth == 1 && !*sfp.toBool():
continue
case fi.basicWidth == 4 && *sfp.toUint32() == 0:
continue
case fi.basicWidth == 8 && *sfp.toUint64() == 0:
continue
}
}
}
dfp := dst.offset(fi.field)
fi.merge(dfp, sfp)
}
// TODO: Make this faster?
out := dst.asPointerTo(mi.typ).Elem()
in := src.asPointerTo(mi.typ).Elem()
if emIn, err := extendable(in.Addr().Interface()); err == nil {
emOut, _ := extendable(out.Addr().Interface())
mIn, muIn := emIn.extensionsRead()
if mIn != nil {
mOut := emOut.extensionsWrite()
muIn.Lock()
mergeExtension(mOut, mIn)
muIn.Unlock()
}
}
if mi.unrecognized.IsValid() {
if b := *src.offset(mi.unrecognized).toBytes(); len(b) > 0 {
*dst.offset(mi.unrecognized).toBytes() = append([]byte(nil), b...)
}
}
}
func (mi *mergeInfo) computeMergeInfo() {
mi.lock.Lock()
defer mi.lock.Unlock()
if mi.initialized != 0 {
return
}
t := mi.typ
n := t.NumField()
props := GetProperties(t)
for i := 0; i < n; i++ {
f := t.Field(i)
if strings.HasPrefix(f.Name, "XXX_") {
continue
}
mfi := mergeFieldInfo{field: toField(&f)}
tf := f.Type
// As an optimization, we can avoid the merge function call cost
// if we know for sure that the source will have no effect
// by checking if it is the zero value.
if unsafeAllowed {
switch tf.Kind() {
case reflect.Ptr, reflect.Slice, reflect.String:
// As a special case, we assume slices and strings are pointers
// since we know that the first field in the SliceSlice or
// StringHeader is a data pointer.
mfi.isPointer = true
case reflect.Bool:
mfi.basicWidth = 1
case reflect.Int32, reflect.Uint32, reflect.Float32:
mfi.basicWidth = 4
case reflect.Int64, reflect.Uint64, reflect.Float64:
mfi.basicWidth = 8
}
}
// Unwrap tf to get at its most basic type.
var isPointer, isSlice bool
if tf.Kind() == reflect.Slice && tf.Elem().Kind() != reflect.Uint8 {
isSlice = true
tf = tf.Elem()
}
if tf.Kind() == reflect.Ptr {
isPointer = true
tf = tf.Elem()
}
if isPointer && isSlice && tf.Kind() != reflect.Struct {
panic("both pointer and slice for basic type in " + tf.Name())
}
switch tf.Kind() {
case reflect.Int32:
switch {
case isSlice: // E.g., []int32
mfi.merge = func(dst, src pointer) {
// NOTE: toInt32Slice is not defined (see pointer_reflect.go).
/*
sfsp := src.toInt32Slice()
if *sfsp != nil {
dfsp := dst.toInt32Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []int64{}
}
}
*/
sfs := src.getInt32Slice()
if sfs != nil {
dfs := dst.getInt32Slice()
dfs = append(dfs, sfs...)
if dfs == nil {
dfs = []int32{}
}
dst.setInt32Slice(dfs)
}
}
case isPointer: // E.g., *int32
mfi.merge = func(dst, src pointer) {
// NOTE: toInt32Ptr is not defined (see pointer_reflect.go).
/*
sfpp := src.toInt32Ptr()
if *sfpp != nil {
dfpp := dst.toInt32Ptr()
if *dfpp == nil {
*dfpp = Int32(**sfpp)
} else {
**dfpp = **sfpp
}
}
*/
sfp := src.getInt32Ptr()
if sfp != nil {
dfp := dst.getInt32Ptr()
if dfp == nil {
dst.setInt32Ptr(*sfp)
} else {
*dfp = *sfp
}
}
}
default: // E.g., int32
mfi.merge = func(dst, src pointer) {
if v := *src.toInt32(); v != 0 {
*dst.toInt32() = v
}
}
}
case reflect.Int64:
switch {
case isSlice: // E.g., []int64
mfi.merge = func(dst, src pointer) {
sfsp := src.toInt64Slice()
if *sfsp != nil {
dfsp := dst.toInt64Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []int64{}
}
}
}
case isPointer: // E.g., *int64
mfi.merge = func(dst, src pointer) {
sfpp := src.toInt64Ptr()
if *sfpp != nil {
dfpp := dst.toInt64Ptr()
if *dfpp == nil {
*dfpp = Int64(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., int64
mfi.merge = func(dst, src pointer) {
if v := *src.toInt64(); v != 0 {
*dst.toInt64() = v
}
}
}
case reflect.Uint32:
switch {
case isSlice: // E.g., []uint32
mfi.merge = func(dst, src pointer) {
sfsp := src.toUint32Slice()
if *sfsp != nil {
dfsp := dst.toUint32Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []uint32{}
}
}
}
case isPointer: // E.g., *uint32
mfi.merge = func(dst, src pointer) {
sfpp := src.toUint32Ptr()
if *sfpp != nil {
dfpp := dst.toUint32Ptr()
if *dfpp == nil {
*dfpp = Uint32(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., uint32
mfi.merge = func(dst, src pointer) {
if v := *src.toUint32(); v != 0 {
*dst.toUint32() = v
}
}
}
case reflect.Uint64:
switch {
case isSlice: // E.g., []uint64
mfi.merge = func(dst, src pointer) {
sfsp := src.toUint64Slice()
if *sfsp != nil {
dfsp := dst.toUint64Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []uint64{}
}
}
}
case isPointer: // E.g., *uint64
mfi.merge = func(dst, src pointer) {
sfpp := src.toUint64Ptr()
if *sfpp != nil {
dfpp := dst.toUint64Ptr()
if *dfpp == nil {
*dfpp = Uint64(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., uint64
mfi.merge = func(dst, src pointer) {
if v := *src.toUint64(); v != 0 {
*dst.toUint64() = v
}
}
}
case reflect.Float32:
switch {
case isSlice: // E.g., []float32
mfi.merge = func(dst, src pointer) {
sfsp := src.toFloat32Slice()
if *sfsp != nil {
dfsp := dst.toFloat32Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []float32{}
}
}
}
case isPointer: // E.g., *float32
mfi.merge = func(dst, src pointer) {
sfpp := src.toFloat32Ptr()
if *sfpp != nil {
dfpp := dst.toFloat32Ptr()
if *dfpp == nil {
*dfpp = Float32(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., float32
mfi.merge = func(dst, src pointer) {
if v := *src.toFloat32(); v != 0 {
*dst.toFloat32() = v
}
}
}
case reflect.Float64:
switch {
case isSlice: // E.g., []float64
mfi.merge = func(dst, src pointer) {
sfsp := src.toFloat64Slice()
if *sfsp != nil {
dfsp := dst.toFloat64Slice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []float64{}
}
}
}
case isPointer: // E.g., *float64
mfi.merge = func(dst, src pointer) {
sfpp := src.toFloat64Ptr()
if *sfpp != nil {
dfpp := dst.toFloat64Ptr()
if *dfpp == nil {
*dfpp = Float64(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., float64
mfi.merge = func(dst, src pointer) {
if v := *src.toFloat64(); v != 0 {
*dst.toFloat64() = v
}
}
}
case reflect.Bool:
switch {
case isSlice: // E.g., []bool
mfi.merge = func(dst, src pointer) {
sfsp := src.toBoolSlice()
if *sfsp != nil {
dfsp := dst.toBoolSlice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []bool{}
}
}
}
case isPointer: // E.g., *bool
mfi.merge = func(dst, src pointer) {
sfpp := src.toBoolPtr()
if *sfpp != nil {
dfpp := dst.toBoolPtr()
if *dfpp == nil {
*dfpp = Bool(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., bool
mfi.merge = func(dst, src pointer) {
if v := *src.toBool(); v {
*dst.toBool() = v
}
}
}
case reflect.String:
switch {
case isSlice: // E.g., []string
mfi.merge = func(dst, src pointer) {
sfsp := src.toStringSlice()
if *sfsp != nil {
dfsp := dst.toStringSlice()
*dfsp = append(*dfsp, *sfsp...)
if *dfsp == nil {
*dfsp = []string{}
}
}
}
case isPointer: // E.g., *string
mfi.merge = func(dst, src pointer) {
sfpp := src.toStringPtr()
if *sfpp != nil {
dfpp := dst.toStringPtr()
if *dfpp == nil {
*dfpp = String(**sfpp)
} else {
**dfpp = **sfpp
}
}
}
default: // E.g., string
mfi.merge = func(dst, src pointer) {
if v := *src.toString(); v != "" {
*dst.toString() = v
}
}
}
case reflect.Slice:
isProto3 := props.Prop[i].proto3
switch {
case isPointer:
panic("bad pointer in byte slice case in " + tf.Name())
case tf.Elem().Kind() != reflect.Uint8:
panic("bad element kind in byte slice case in " + tf.Name())
case isSlice: // E.g., [][]byte
mfi.merge = func(dst, src pointer) {
sbsp := src.toBytesSlice()
if *sbsp != nil {
dbsp := dst.toBytesSlice()
for _, sb := range *sbsp {
if sb == nil {
*dbsp = append(*dbsp, nil)
} else {
*dbsp = append(*dbsp, append([]byte{}, sb...))
}
}
if *dbsp == nil {
*dbsp = [][]byte{}
}
}
}
default: // E.g., []byte
mfi.merge = func(dst, src pointer) {
sbp := src.toBytes()
if *sbp != nil {
dbp := dst.toBytes()
if !isProto3 || len(*sbp) > 0 {
*dbp = append([]byte{}, *sbp...)
}
}
}
}
case reflect.Struct:
switch {
case !isPointer:
panic(fmt.Sprintf("message field %s without pointer", tf))
case isSlice: // E.g., []*pb.T
mi := getMergeInfo(tf)
mfi.merge = func(dst, src pointer) {
sps := src.getPointerSlice()
if sps != nil {
dps := dst.getPointerSlice()
for _, sp := range sps {
var dp pointer
if !sp.isNil() {
dp = valToPointer(reflect.New(tf))
mi.merge(dp, sp)
}
dps = append(dps, dp)
}
if dps == nil {
dps = []pointer{}
}
dst.setPointerSlice(dps)
}
}
default: // E.g., *pb.T
mi := getMergeInfo(tf)
mfi.merge = func(dst, src pointer) {
sp := src.getPointer()
if !sp.isNil() {
dp := dst.getPointer()
if dp.isNil() {
dp = valToPointer(reflect.New(tf))
dst.setPointer(dp)
}
mi.merge(dp, sp)
}
}
}
case reflect.Map:
switch {
case isPointer || isSlice:
panic("bad pointer or slice in map case in " + tf.Name())
default: // E.g., map[K]V
mfi.merge = func(dst, src pointer) {
sm := src.asPointerTo(tf).Elem()
if sm.Len() == 0 {
return
}
dm := dst.asPointerTo(tf).Elem()
if dm.IsNil() {
dm.Set(reflect.MakeMap(tf))
}
switch tf.Elem().Kind() {
case reflect.Ptr: // Proto struct (e.g., *T)
for _, key := range sm.MapKeys() {
val := sm.MapIndex(key)
val = reflect.ValueOf(Clone(val.Interface().(Message)))
dm.SetMapIndex(key, val)
}
case reflect.Slice: // E.g. Bytes type (e.g., []byte)
for _, key := range sm.MapKeys() {
val := sm.MapIndex(key)
val = reflect.ValueOf(append([]byte{}, val.Bytes()...))
dm.SetMapIndex(key, val)
}
default: // Basic type (e.g., string)
for _, key := range sm.MapKeys() {
val := sm.MapIndex(key)
dm.SetMapIndex(key, val)
}
}
}
}
case reflect.Interface:
// Must be oneof field.
switch {
case isPointer || isSlice:
panic("bad pointer or slice in interface case in " + tf.Name())
default: // E.g., interface{}
// TODO: Make this faster?
mfi.merge = func(dst, src pointer) {
su := src.asPointerTo(tf).Elem()
if !su.IsNil() {
du := dst.asPointerTo(tf).Elem()
typ := su.Elem().Type()
if du.IsNil() || du.Elem().Type() != typ {
du.Set(reflect.New(typ.Elem())) // Initialize interface if empty
}
sv := su.Elem().Elem().Field(0)
if sv.Kind() == reflect.Ptr && sv.IsNil() {
return
}
dv := du.Elem().Elem().Field(0)
if dv.Kind() == reflect.Ptr && dv.IsNil() {
dv.Set(reflect.New(sv.Type().Elem())) // Initialize proto message if empty
}
switch sv.Type().Kind() {
case reflect.Ptr: // Proto struct (e.g., *T)
Merge(dv.Interface().(Message), sv.Interface().(Message))
case reflect.Slice: // E.g. Bytes type (e.g., []byte)
dv.Set(reflect.ValueOf(append([]byte{}, sv.Bytes()...)))
default: // Basic type (e.g., string)
dv.Set(sv)
}
}
}
}
default:
panic(fmt.Sprintf("merger not found for type:%s", tf))
}
mi.fields = append(mi.fields, mfi)
}
mi.unrecognized = invalidField
if f, ok := t.FieldByName("XXX_unrecognized"); ok {
if f.Type != reflect.TypeOf([]byte{}) {
panic("expected XXX_unrecognized to be of type []byte")
}
mi.unrecognized = toField(&f)
}
atomic.StoreInt32(&mi.initialized, 1)
}

File diff suppressed because it is too large Load Diff

View File

@ -50,7 +50,6 @@ import (
var (
newline = []byte("\n")
spaces = []byte(" ")
gtNewline = []byte(">\n")
endBraceNewline = []byte("}\n")
backslashN = []byte{'\\', 'n'}
backslashR = []byte{'\\', 'r'}
@ -170,11 +169,6 @@ func writeName(w *textWriter, props *Properties) error {
return nil
}
// raw is the interface satisfied by RawMessage.
type raw interface {
Bytes() []byte
}
func requiresQuotes(u string) bool {
// When type URL contains any characters except [0-9A-Za-z./\-]*, it must be quoted.
for _, ch := range u {
@ -269,6 +263,10 @@ func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
props := sprops.Prop[i]
name := st.Field(i).Name
if name == "XXX_NoUnkeyedLiteral" {
continue
}
if strings.HasPrefix(name, "XXX_") {
// There are two XXX_ fields:
// XXX_unrecognized []byte
@ -436,12 +434,6 @@ func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
return err
}
}
if b, ok := fv.Interface().(raw); ok {
if err := writeRaw(w, b.Bytes()); err != nil {
return err
}
continue
}
// Enums have a String method, so writeAny will work fine.
if err := tm.writeAny(w, fv, props); err != nil {
@ -455,7 +447,7 @@ func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
// Extensions (the XXX_extensions field).
pv := sv.Addr()
if _, ok := extendable(pv.Interface()); ok {
if _, err := extendable(pv.Interface()); err == nil {
if err := tm.writeExtensions(w, pv); err != nil {
return err
}
@ -464,27 +456,6 @@ func (tm *TextMarshaler) writeStruct(w *textWriter, sv reflect.Value) error {
return nil
}
// writeRaw writes an uninterpreted raw message.
func writeRaw(w *textWriter, b []byte) error {
if err := w.WriteByte('<'); err != nil {
return err
}
if !w.compact {
if err := w.WriteByte('\n'); err != nil {
return err
}
}
w.indent()
if err := writeUnknownStruct(w, b); err != nil {
return err
}
w.unindent()
if err := w.WriteByte('>'); err != nil {
return err
}
return nil
}
// writeAny writes an arbitrary field.
func (tm *TextMarshaler) writeAny(w *textWriter, v reflect.Value, props *Properties) error {
v = reflect.Indirect(v)
@ -535,6 +506,19 @@ func (tm *TextMarshaler) writeAny(w *textWriter, v reflect.Value, props *Propert
}
}
w.indent()
if v.CanAddr() {
// Calling v.Interface on a struct causes the reflect package to
// copy the entire struct. This is racy with the new Marshaler
// since we atomically update the XXX_sizecache.
//
// Thus, we retrieve a pointer to the struct if possible to avoid
// a race since v.Interface on the pointer doesn't copy the struct.
//
// If v is not addressable, then we are not worried about a race
// since it implies that the binary Marshaler cannot possibly be
// mutating this value.
v = v.Addr()
}
if etm, ok := v.Interface().(encoding.TextMarshaler); ok {
text, err := etm.MarshalText()
if err != nil {
@ -543,8 +527,13 @@ func (tm *TextMarshaler) writeAny(w *textWriter, v reflect.Value, props *Propert
if _, err = w.Write(text); err != nil {
return err
}
} else if err := tm.writeStruct(w, v); err != nil {
return err
} else {
if v.Kind() == reflect.Ptr {
v = v.Elem()
}
if err := tm.writeStruct(w, v); err != nil {
return err
}
}
w.unindent()
if err := w.WriteByte(ket); err != nil {

View File

@ -206,7 +206,6 @@ func (p *textParser) advance() {
var (
errBadUTF8 = errors.New("proto: bad UTF-8")
errBadHex = errors.New("proto: bad hexadecimal")
)
func unquoteC(s string, quote rune) (string, error) {
@ -277,60 +276,47 @@ func unescape(s string) (ch string, tail string, err error) {
return "?", s, nil // trigraph workaround
case '\'', '"', '\\':
return string(r), s, nil
case '0', '1', '2', '3', '4', '5', '6', '7', 'x', 'X':
case '0', '1', '2', '3', '4', '5', '6', '7':
if len(s) < 2 {
return "", "", fmt.Errorf(`\%c requires 2 following digits`, r)
}
base := 8
ss := s[:2]
ss := string(r) + s[:2]
s = s[2:]
if r == 'x' || r == 'X' {
base = 16
} else {
ss = string(r) + ss
}
i, err := strconv.ParseUint(ss, base, 8)
i, err := strconv.ParseUint(ss, 8, 8)
if err != nil {
return "", "", err
return "", "", fmt.Errorf(`\%s contains non-octal digits`, ss)
}
return string([]byte{byte(i)}), s, nil
case 'u', 'U':
n := 4
if r == 'U' {
case 'x', 'X', 'u', 'U':
var n int
switch r {
case 'x', 'X':
n = 2
case 'u':
n = 4
case 'U':
n = 8
}
if len(s) < n {
return "", "", fmt.Errorf(`\%c requires %d digits`, r, n)
}
bs := make([]byte, n/2)
for i := 0; i < n; i += 2 {
a, ok1 := unhex(s[i])
b, ok2 := unhex(s[i+1])
if !ok1 || !ok2 {
return "", "", errBadHex
}
bs[i/2] = a<<4 | b
return "", "", fmt.Errorf(`\%c requires %d following digits`, r, n)
}
ss := s[:n]
s = s[n:]
return string(bs), s, nil
i, err := strconv.ParseUint(ss, 16, 64)
if err != nil {
return "", "", fmt.Errorf(`\%c%s contains non-hexadecimal digits`, r, ss)
}
if r == 'x' || r == 'X' {
return string([]byte{byte(i)}), s, nil
}
if i > utf8.MaxRune {
return "", "", fmt.Errorf(`\%c%s is not a valid Unicode code point`, r, ss)
}
return string(i), s, nil
}
return "", "", fmt.Errorf(`unknown escape \%c`, r)
}
// Adapted from src/pkg/strconv/quote.go.
func unhex(b byte) (v byte, ok bool) {
switch {
case '0' <= b && b <= '9':
return b - '0', true
case 'a' <= b && b <= 'f':
return b - 'a' + 10, true
case 'A' <= b && b <= 'F':
return b - 'A' + 10, true
}
return 0, false
}
// Back off the parser by one token. Can only be done between calls to next().
// It makes the next advance() a no-op.
func (p *textParser) back() { p.backed = true }
@ -728,6 +714,9 @@ func (p *textParser) consumeExtName() (string, error) {
if tok.err != nil {
return "", p.errorf("unrecognized type_url or extension name: %s", tok.err)
}
if p.done && tok.value != "]" {
return "", p.errorf("unclosed type_url or extension name")
}
}
return strings.Join(parts, ""), nil
}
@ -865,7 +854,7 @@ func (p *textParser) readAny(v reflect.Value, props *Properties) error {
return p.readStruct(fv, terminator)
case reflect.Uint32:
if x, err := strconv.ParseUint(tok.value, 0, 32); err == nil {
fv.SetUint(x)
fv.SetUint(uint64(x))
return nil
}
case reflect.Uint64:
@ -883,13 +872,9 @@ func (p *textParser) readAny(v reflect.Value, props *Properties) error {
// UnmarshalText returns *RequiredNotSetError.
func UnmarshalText(s string, pb Message) error {
if um, ok := pb.(encoding.TextUnmarshaler); ok {
err := um.UnmarshalText([]byte(s))
return err
return um.UnmarshalText([]byte(s))
}
pb.Reset()
v := reflect.ValueOf(pb)
if pe := newTextParser(s).readStruct(v.Elem(), ""); pe != nil {
return pe
}
return nil
return newTextParser(s).readStruct(v.Elem(), "")
}

View File

@ -1,15 +1,6 @@
// Code generated by protoc-gen-go. DO NOT EDIT.
// source: google/protobuf/any.proto
/*
Package any is a generated protocol buffer package.
It is generated from these files:
google/protobuf/any.proto
It has these top-level messages:
Any
*/
package any
import proto "github.com/golang/protobuf/proto"
@ -132,14 +123,36 @@ type Any struct {
//
TypeUrl string `protobuf:"bytes,1,opt,name=type_url,json=typeUrl" json:"type_url,omitempty"`
// Must be a valid serialized protocol buffer of the above specified type.
Value []byte `protobuf:"bytes,2,opt,name=value,proto3" json:"value,omitempty"`
Value []byte `protobuf:"bytes,2,opt,name=value,proto3" json:"value,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *Any) Reset() { *m = Any{} }
func (m *Any) String() string { return proto.CompactTextString(m) }
func (*Any) ProtoMessage() {}
func (*Any) Descriptor() ([]byte, []int) { return fileDescriptor0, []int{0} }
func (*Any) XXX_WellKnownType() string { return "Any" }
func (m *Any) Reset() { *m = Any{} }
func (m *Any) String() string { return proto.CompactTextString(m) }
func (*Any) ProtoMessage() {}
func (*Any) Descriptor() ([]byte, []int) {
return fileDescriptor_any_744b9ca530f228db, []int{0}
}
func (*Any) XXX_WellKnownType() string { return "Any" }
func (m *Any) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Any.Unmarshal(m, b)
}
func (m *Any) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Any.Marshal(b, m, deterministic)
}
func (dst *Any) XXX_Merge(src proto.Message) {
xxx_messageInfo_Any.Merge(dst, src)
}
func (m *Any) XXX_Size() int {
return xxx_messageInfo_Any.Size(m)
}
func (m *Any) XXX_DiscardUnknown() {
xxx_messageInfo_Any.DiscardUnknown(m)
}
var xxx_messageInfo_Any proto.InternalMessageInfo
func (m *Any) GetTypeUrl() string {
if m != nil {
@ -159,9 +172,9 @@ func init() {
proto.RegisterType((*Any)(nil), "google.protobuf.Any")
}
func init() { proto.RegisterFile("google/protobuf/any.proto", fileDescriptor0) }
func init() { proto.RegisterFile("google/protobuf/any.proto", fileDescriptor_any_744b9ca530f228db) }
var fileDescriptor0 = []byte{
var fileDescriptor_any_744b9ca530f228db = []byte{
// 185 bytes of a gzipped FileDescriptorProto
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xff, 0xe2, 0x92, 0x4c, 0xcf, 0xcf, 0x4f,
0xcf, 0x49, 0xd5, 0x2f, 0x28, 0xca, 0x2f, 0xc9, 0x4f, 0x2a, 0x4d, 0xd3, 0x4f, 0xcc, 0xab, 0xd4,

View File

@ -1,15 +1,6 @@
// Code generated by protoc-gen-go. DO NOT EDIT.
// source: google/protobuf/duration.proto
/*
Package duration is a generated protocol buffer package.
It is generated from these files:
google/protobuf/duration.proto
It has these top-level messages:
Duration
*/
package duration
import proto "github.com/golang/protobuf/proto"
@ -98,14 +89,36 @@ type Duration struct {
// of one second or more, a non-zero value for the `nanos` field must be
// of the same sign as the `seconds` field. Must be from -999,999,999
// to +999,999,999 inclusive.
Nanos int32 `protobuf:"varint,2,opt,name=nanos" json:"nanos,omitempty"`
Nanos int32 `protobuf:"varint,2,opt,name=nanos" json:"nanos,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *Duration) Reset() { *m = Duration{} }
func (m *Duration) String() string { return proto.CompactTextString(m) }
func (*Duration) ProtoMessage() {}
func (*Duration) Descriptor() ([]byte, []int) { return fileDescriptor0, []int{0} }
func (*Duration) XXX_WellKnownType() string { return "Duration" }
func (m *Duration) Reset() { *m = Duration{} }
func (m *Duration) String() string { return proto.CompactTextString(m) }
func (*Duration) ProtoMessage() {}
func (*Duration) Descriptor() ([]byte, []int) {
return fileDescriptor_duration_e7d612259e3f0613, []int{0}
}
func (*Duration) XXX_WellKnownType() string { return "Duration" }
func (m *Duration) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Duration.Unmarshal(m, b)
}
func (m *Duration) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Duration.Marshal(b, m, deterministic)
}
func (dst *Duration) XXX_Merge(src proto.Message) {
xxx_messageInfo_Duration.Merge(dst, src)
}
func (m *Duration) XXX_Size() int {
return xxx_messageInfo_Duration.Size(m)
}
func (m *Duration) XXX_DiscardUnknown() {
xxx_messageInfo_Duration.DiscardUnknown(m)
}
var xxx_messageInfo_Duration proto.InternalMessageInfo
func (m *Duration) GetSeconds() int64 {
if m != nil {
@ -125,9 +138,11 @@ func init() {
proto.RegisterType((*Duration)(nil), "google.protobuf.Duration")
}
func init() { proto.RegisterFile("google/protobuf/duration.proto", fileDescriptor0) }
func init() {
proto.RegisterFile("google/protobuf/duration.proto", fileDescriptor_duration_e7d612259e3f0613)
}
var fileDescriptor0 = []byte{
var fileDescriptor_duration_e7d612259e3f0613 = []byte{
// 190 bytes of a gzipped FileDescriptorProto
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xff, 0xe2, 0x92, 0x4b, 0xcf, 0xcf, 0x4f,
0xcf, 0x49, 0xd5, 0x2f, 0x28, 0xca, 0x2f, 0xc9, 0x4f, 0x2a, 0x4d, 0xd3, 0x4f, 0x29, 0x2d, 0x4a,

View File

@ -1,43 +0,0 @@
#!/bin/bash -e
#
# This script fetches and rebuilds the "well-known types" protocol buffers.
# To run this you will need protoc and goprotobuf installed;
# see https://github.com/golang/protobuf for instructions.
# You also need Go and Git installed.
PKG=github.com/golang/protobuf/ptypes
UPSTREAM=https://github.com/google/protobuf
UPSTREAM_SUBDIR=src/google/protobuf
PROTO_FILES=(any duration empty struct timestamp wrappers)
function die() {
echo 1>&2 $*
exit 1
}
# Sanity check that the right tools are accessible.
for tool in go git protoc protoc-gen-go; do
q=$(which $tool) || die "didn't find $tool"
echo 1>&2 "$tool: $q"
done
tmpdir=$(mktemp -d -t regen-wkt.XXXXXX)
trap 'rm -rf $tmpdir' EXIT
echo -n 1>&2 "finding package dir... "
pkgdir=$(go list -f '{{.Dir}}' $PKG)
echo 1>&2 $pkgdir
base=$(echo $pkgdir | sed "s,/$PKG\$,,")
echo 1>&2 "base: $base"
cd "$base"
echo 1>&2 "fetching latest protos... "
git clone -q $UPSTREAM $tmpdir
for file in ${PROTO_FILES[@]}; do
echo 1>&2 "* $file"
protoc --go_out=. -I$tmpdir/src $tmpdir/src/google/protobuf/$file.proto || die
cp $tmpdir/src/google/protobuf/$file.proto $PKG/$file
done
echo 1>&2 "All OK"

View File

@ -1,15 +1,6 @@
// Code generated by protoc-gen-go. DO NOT EDIT.
// source: google/protobuf/timestamp.proto
/*
Package timestamp is a generated protocol buffer package.
It is generated from these files:
google/protobuf/timestamp.proto
It has these top-level messages:
Timestamp
*/
package timestamp
import proto "github.com/golang/protobuf/proto"
@ -101,7 +92,7 @@ const _ = proto.ProtoPackageIsVersion2 // please upgrade the proto package
// to this format using [`strftime`](https://docs.python.org/2/library/time.html#time.strftime)
// with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one
// can use the Joda Time's [`ISODateTimeFormat.dateTime()`](
// http://joda-time.sourceforge.net/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime())
// http://www.joda.org/joda-time/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime--)
// to obtain a formatter capable of generating timestamps in this format.
//
//
@ -114,14 +105,36 @@ type Timestamp struct {
// second values with fractions must still have non-negative nanos values
// that count forward in time. Must be from 0 to 999,999,999
// inclusive.
Nanos int32 `protobuf:"varint,2,opt,name=nanos" json:"nanos,omitempty"`
Nanos int32 `protobuf:"varint,2,opt,name=nanos" json:"nanos,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *Timestamp) Reset() { *m = Timestamp{} }
func (m *Timestamp) String() string { return proto.CompactTextString(m) }
func (*Timestamp) ProtoMessage() {}
func (*Timestamp) Descriptor() ([]byte, []int) { return fileDescriptor0, []int{0} }
func (*Timestamp) XXX_WellKnownType() string { return "Timestamp" }
func (m *Timestamp) Reset() { *m = Timestamp{} }
func (m *Timestamp) String() string { return proto.CompactTextString(m) }
func (*Timestamp) ProtoMessage() {}
func (*Timestamp) Descriptor() ([]byte, []int) {
return fileDescriptor_timestamp_b826e8e5fba671a8, []int{0}
}
func (*Timestamp) XXX_WellKnownType() string { return "Timestamp" }
func (m *Timestamp) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_Timestamp.Unmarshal(m, b)
}
func (m *Timestamp) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_Timestamp.Marshal(b, m, deterministic)
}
func (dst *Timestamp) XXX_Merge(src proto.Message) {
xxx_messageInfo_Timestamp.Merge(dst, src)
}
func (m *Timestamp) XXX_Size() int {
return xxx_messageInfo_Timestamp.Size(m)
}
func (m *Timestamp) XXX_DiscardUnknown() {
xxx_messageInfo_Timestamp.DiscardUnknown(m)
}
var xxx_messageInfo_Timestamp proto.InternalMessageInfo
func (m *Timestamp) GetSeconds() int64 {
if m != nil {
@ -141,9 +154,11 @@ func init() {
proto.RegisterType((*Timestamp)(nil), "google.protobuf.Timestamp")
}
func init() { proto.RegisterFile("google/protobuf/timestamp.proto", fileDescriptor0) }
func init() {
proto.RegisterFile("google/protobuf/timestamp.proto", fileDescriptor_timestamp_b826e8e5fba671a8)
}
var fileDescriptor0 = []byte{
var fileDescriptor_timestamp_b826e8e5fba671a8 = []byte{
// 191 bytes of a gzipped FileDescriptorProto
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xff, 0xe2, 0x92, 0x4f, 0xcf, 0xcf, 0x4f,
0xcf, 0x49, 0xd5, 0x2f, 0x28, 0xca, 0x2f, 0xc9, 0x4f, 0x2a, 0x4d, 0xd3, 0x2f, 0xc9, 0xcc, 0x4d,

View File

@ -114,7 +114,7 @@ option objc_class_prefix = "GPB";
// to this format using [`strftime`](https://docs.python.org/2/library/time.html#time.strftime)
// with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one
// can use the Joda Time's [`ISODateTimeFormat.dateTime()`](
// http://joda-time.sourceforge.net/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime())
// http://www.joda.org/joda-time/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime--)
// to obtain a formatter capable of generating timestamps in this format.
//
//

1
vendor/github.com/google/btree/.travis.yml generated vendored Normal file
View File

@ -0,0 +1 @@
language: go

202
vendor/github.com/google/btree/LICENSE generated vendored Normal file
View File

@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

12
vendor/github.com/google/btree/README.md generated vendored Normal file
View File

@ -0,0 +1,12 @@
# BTree implementation for Go
![Travis CI Build Status](https://api.travis-ci.org/google/btree.svg?branch=master)
This package provides an in-memory B-Tree implementation for Go, useful as
an ordered, mutable data structure.
The API is based off of the wonderful
http://godoc.org/github.com/petar/GoLLRB/llrb, and is meant to allow btree to
act as a drop-in replacement for gollrb trees.
See http://godoc.org/github.com/google/btree for documentation.

649
vendor/github.com/google/btree/btree.go generated vendored Normal file
View File

@ -0,0 +1,649 @@
// Copyright 2014 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package btree implements in-memory B-Trees of arbitrary degree.
//
// btree implements an in-memory B-Tree for use as an ordered data structure.
// It is not meant for persistent storage solutions.
//
// It has a flatter structure than an equivalent red-black or other binary tree,
// which in some cases yields better memory usage and/or performance.
// See some discussion on the matter here:
// http://google-opensource.blogspot.com/2013/01/c-containers-that-save-memory-and-time.html
// Note, though, that this project is in no way related to the C++ B-Tree
// implmentation written about there.
//
// Within this tree, each node contains a slice of items and a (possibly nil)
// slice of children. For basic numeric values or raw structs, this can cause
// efficiency differences when compared to equivalent C++ template code that
// stores values in arrays within the node:
// * Due to the overhead of storing values as interfaces (each
// value needs to be stored as the value itself, then 2 words for the
// interface pointing to that value and its type), resulting in higher
// memory use.
// * Since interfaces can point to values anywhere in memory, values are
// most likely not stored in contiguous blocks, resulting in a higher
// number of cache misses.
// These issues don't tend to matter, though, when working with strings or other
// heap-allocated structures, since C++-equivalent structures also must store
// pointers and also distribute their values across the heap.
//
// This implementation is designed to be a drop-in replacement to gollrb.LLRB
// trees, (http://github.com/petar/gollrb), an excellent and probably the most
// widely used ordered tree implementation in the Go ecosystem currently.
// Its functions, therefore, exactly mirror those of
// llrb.LLRB where possible. Unlike gollrb, though, we currently don't
// support storing multiple equivalent values or backwards iteration.
package btree
import (
"fmt"
"io"
"sort"
"strings"
)
// Item represents a single object in the tree.
type Item interface {
// Less tests whether the current item is less than the given argument.
//
// This must provide a strict weak ordering.
// If !a.Less(b) && !b.Less(a), we treat this to mean a == b (i.e. we can only
// hold one of either a or b in the tree).
Less(than Item) bool
}
const (
DefaultFreeListSize = 32
)
// FreeList represents a free list of btree nodes. By default each
// BTree has its own FreeList, but multiple BTrees can share the same
// FreeList.
// Two Btrees using the same freelist are not safe for concurrent write access.
type FreeList struct {
freelist []*node
}
// NewFreeList creates a new free list.
// size is the maximum size of the returned free list.
func NewFreeList(size int) *FreeList {
return &FreeList{freelist: make([]*node, 0, size)}
}
func (f *FreeList) newNode() (n *node) {
index := len(f.freelist) - 1
if index < 0 {
return new(node)
}
f.freelist, n = f.freelist[:index], f.freelist[index]
return
}
func (f *FreeList) freeNode(n *node) {
if len(f.freelist) < cap(f.freelist) {
f.freelist = append(f.freelist, n)
}
}
// ItemIterator allows callers of Ascend* to iterate in-order over portions of
// the tree. When this function returns false, iteration will stop and the
// associated Ascend* function will immediately return.
type ItemIterator func(i Item) bool
// New creates a new B-Tree with the given degree.
//
// New(2), for example, will create a 2-3-4 tree (each node contains 1-3 items
// and 2-4 children).
func New(degree int) *BTree {
return NewWithFreeList(degree, NewFreeList(DefaultFreeListSize))
}
// NewWithFreeList creates a new B-Tree that uses the given node free list.
func NewWithFreeList(degree int, f *FreeList) *BTree {
if degree <= 1 {
panic("bad degree")
}
return &BTree{
degree: degree,
freelist: f,
}
}
// items stores items in a node.
type items []Item
// insertAt inserts a value into the given index, pushing all subsequent values
// forward.
func (s *items) insertAt(index int, item Item) {
*s = append(*s, nil)
if index < len(*s) {
copy((*s)[index+1:], (*s)[index:])
}
(*s)[index] = item
}
// removeAt removes a value at a given index, pulling all subsequent values
// back.
func (s *items) removeAt(index int) Item {
item := (*s)[index]
(*s)[index] = nil
copy((*s)[index:], (*s)[index+1:])
*s = (*s)[:len(*s)-1]
return item
}
// pop removes and returns the last element in the list.
func (s *items) pop() (out Item) {
index := len(*s) - 1
out = (*s)[index]
(*s)[index] = nil
*s = (*s)[:index]
return
}
// find returns the index where the given item should be inserted into this
// list. 'found' is true if the item already exists in the list at the given
// index.
func (s items) find(item Item) (index int, found bool) {
i := sort.Search(len(s), func(i int) bool {
return item.Less(s[i])
})
if i > 0 && !s[i-1].Less(item) {
return i - 1, true
}
return i, false
}
// children stores child nodes in a node.
type children []*node
// insertAt inserts a value into the given index, pushing all subsequent values
// forward.
func (s *children) insertAt(index int, n *node) {
*s = append(*s, nil)
if index < len(*s) {
copy((*s)[index+1:], (*s)[index:])
}
(*s)[index] = n
}
// removeAt removes a value at a given index, pulling all subsequent values
// back.
func (s *children) removeAt(index int) *node {
n := (*s)[index]
(*s)[index] = nil
copy((*s)[index:], (*s)[index+1:])
*s = (*s)[:len(*s)-1]
return n
}
// pop removes and returns the last element in the list.
func (s *children) pop() (out *node) {
index := len(*s) - 1
out = (*s)[index]
(*s)[index] = nil
*s = (*s)[:index]
return
}
// node is an internal node in a tree.
//
// It must at all times maintain the invariant that either
// * len(children) == 0, len(items) unconstrained
// * len(children) == len(items) + 1
type node struct {
items items
children children
t *BTree
}
// split splits the given node at the given index. The current node shrinks,
// and this function returns the item that existed at that index and a new node
// containing all items/children after it.
func (n *node) split(i int) (Item, *node) {
item := n.items[i]
next := n.t.newNode()
next.items = append(next.items, n.items[i+1:]...)
n.items = n.items[:i]
if len(n.children) > 0 {
next.children = append(next.children, n.children[i+1:]...)
n.children = n.children[:i+1]
}
return item, next
}
// maybeSplitChild checks if a child should be split, and if so splits it.
// Returns whether or not a split occurred.
func (n *node) maybeSplitChild(i, maxItems int) bool {
if len(n.children[i].items) < maxItems {
return false
}
first := n.children[i]
item, second := first.split(maxItems / 2)
n.items.insertAt(i, item)
n.children.insertAt(i+1, second)
return true
}
// insert inserts an item into the subtree rooted at this node, making sure
// no nodes in the subtree exceed maxItems items. Should an equivalent item be
// be found/replaced by insert, it will be returned.
func (n *node) insert(item Item, maxItems int) Item {
i, found := n.items.find(item)
if found {
out := n.items[i]
n.items[i] = item
return out
}
if len(n.children) == 0 {
n.items.insertAt(i, item)
return nil
}
if n.maybeSplitChild(i, maxItems) {
inTree := n.items[i]
switch {
case item.Less(inTree):
// no change, we want first split node
case inTree.Less(item):
i++ // we want second split node
default:
out := n.items[i]
n.items[i] = item
return out
}
}
return n.children[i].insert(item, maxItems)
}
// get finds the given key in the subtree and returns it.
func (n *node) get(key Item) Item {
i, found := n.items.find(key)
if found {
return n.items[i]
} else if len(n.children) > 0 {
return n.children[i].get(key)
}
return nil
}
// min returns the first item in the subtree.
func min(n *node) Item {
if n == nil {
return nil
}
for len(n.children) > 0 {
n = n.children[0]
}
if len(n.items) == 0 {
return nil
}
return n.items[0]
}
// max returns the last item in the subtree.
func max(n *node) Item {
if n == nil {
return nil
}
for len(n.children) > 0 {
n = n.children[len(n.children)-1]
}
if len(n.items) == 0 {
return nil
}
return n.items[len(n.items)-1]
}
// toRemove details what item to remove in a node.remove call.
type toRemove int
const (
removeItem toRemove = iota // removes the given item
removeMin // removes smallest item in the subtree
removeMax // removes largest item in the subtree
)
// remove removes an item from the subtree rooted at this node.
func (n *node) remove(item Item, minItems int, typ toRemove) Item {
var i int
var found bool
switch typ {
case removeMax:
if len(n.children) == 0 {
return n.items.pop()
}
i = len(n.items)
case removeMin:
if len(n.children) == 0 {
return n.items.removeAt(0)
}
i = 0
case removeItem:
i, found = n.items.find(item)
if len(n.children) == 0 {
if found {
return n.items.removeAt(i)
}
return nil
}
default:
panic("invalid type")
}
// If we get to here, we have children.
child := n.children[i]
if len(child.items) <= minItems {
return n.growChildAndRemove(i, item, minItems, typ)
}
// Either we had enough items to begin with, or we've done some
// merging/stealing, because we've got enough now and we're ready to return
// stuff.
if found {
// The item exists at index 'i', and the child we've selected can give us a
// predecessor, since if we've gotten here it's got > minItems items in it.
out := n.items[i]
// We use our special-case 'remove' call with typ=maxItem to pull the
// predecessor of item i (the rightmost leaf of our immediate left child)
// and set it into where we pulled the item from.
n.items[i] = child.remove(nil, minItems, removeMax)
return out
}
// Final recursive call. Once we're here, we know that the item isn't in this
// node and that the child is big enough to remove from.
return child.remove(item, minItems, typ)
}
// growChildAndRemove grows child 'i' to make sure it's possible to remove an
// item from it while keeping it at minItems, then calls remove to actually
// remove it.
//
// Most documentation says we have to do two sets of special casing:
// 1) item is in this node
// 2) item is in child
// In both cases, we need to handle the two subcases:
// A) node has enough values that it can spare one
// B) node doesn't have enough values
// For the latter, we have to check:
// a) left sibling has node to spare
// b) right sibling has node to spare
// c) we must merge
// To simplify our code here, we handle cases #1 and #2 the same:
// If a node doesn't have enough items, we make sure it does (using a,b,c).
// We then simply redo our remove call, and the second time (regardless of
// whether we're in case 1 or 2), we'll have enough items and can guarantee
// that we hit case A.
func (n *node) growChildAndRemove(i int, item Item, minItems int, typ toRemove) Item {
child := n.children[i]
if i > 0 && len(n.children[i-1].items) > minItems {
// Steal from left child
stealFrom := n.children[i-1]
stolenItem := stealFrom.items.pop()
child.items.insertAt(0, n.items[i-1])
n.items[i-1] = stolenItem
if len(stealFrom.children) > 0 {
child.children.insertAt(0, stealFrom.children.pop())
}
} else if i < len(n.items) && len(n.children[i+1].items) > minItems {
// steal from right child
stealFrom := n.children[i+1]
stolenItem := stealFrom.items.removeAt(0)
child.items = append(child.items, n.items[i])
n.items[i] = stolenItem
if len(stealFrom.children) > 0 {
child.children = append(child.children, stealFrom.children.removeAt(0))
}
} else {
if i >= len(n.items) {
i--
child = n.children[i]
}
// merge with right child
mergeItem := n.items.removeAt(i)
mergeChild := n.children.removeAt(i + 1)
child.items = append(child.items, mergeItem)
child.items = append(child.items, mergeChild.items...)
child.children = append(child.children, mergeChild.children...)
n.t.freeNode(mergeChild)
}
return n.remove(item, minItems, typ)
}
// iterate provides a simple method for iterating over elements in the tree.
// It could probably use some work to be extra-efficient (it calls from() a
// little more than it should), but it works pretty well for now.
//
// It requires that 'from' and 'to' both return true for values we should hit
// with the iterator. It should also be the case that 'from' returns true for
// values less than or equal to values 'to' returns true for, and 'to'
// returns true for values greater than or equal to those that 'from'
// does.
func (n *node) iterate(from, to func(Item) bool, iter ItemIterator) bool {
for i, item := range n.items {
if !from(item) {
continue
}
if len(n.children) > 0 && !n.children[i].iterate(from, to, iter) {
return false
}
if !to(item) {
return false
}
if !iter(item) {
return false
}
}
if len(n.children) > 0 {
return n.children[len(n.children)-1].iterate(from, to, iter)
}
return true
}
// Used for testing/debugging purposes.
func (n *node) print(w io.Writer, level int) {
fmt.Fprintf(w, "%sNODE:%v\n", strings.Repeat(" ", level), n.items)
for _, c := range n.children {
c.print(w, level+1)
}
}
// BTree is an implementation of a B-Tree.
//
// BTree stores Item instances in an ordered structure, allowing easy insertion,
// removal, and iteration.
//
// Write operations are not safe for concurrent mutation by multiple
// goroutines, but Read operations are.
type BTree struct {
degree int
length int
root *node
freelist *FreeList
}
// maxItems returns the max number of items to allow per node.
func (t *BTree) maxItems() int {
return t.degree*2 - 1
}
// minItems returns the min number of items to allow per node (ignored for the
// root node).
func (t *BTree) minItems() int {
return t.degree - 1
}
func (t *BTree) newNode() (n *node) {
n = t.freelist.newNode()
n.t = t
return
}
func (t *BTree) freeNode(n *node) {
for i := range n.items {
n.items[i] = nil // clear to allow GC
}
n.items = n.items[:0]
for i := range n.children {
n.children[i] = nil // clear to allow GC
}
n.children = n.children[:0]
n.t = nil // clear to allow GC
t.freelist.freeNode(n)
}
// ReplaceOrInsert adds the given item to the tree. If an item in the tree
// already equals the given one, it is removed from the tree and returned.
// Otherwise, nil is returned.
//
// nil cannot be added to the tree (will panic).
func (t *BTree) ReplaceOrInsert(item Item) Item {
if item == nil {
panic("nil item being added to BTree")
}
if t.root == nil {
t.root = t.newNode()
t.root.items = append(t.root.items, item)
t.length++
return nil
} else if len(t.root.items) >= t.maxItems() {
item2, second := t.root.split(t.maxItems() / 2)
oldroot := t.root
t.root = t.newNode()
t.root.items = append(t.root.items, item2)
t.root.children = append(t.root.children, oldroot, second)
}
out := t.root.insert(item, t.maxItems())
if out == nil {
t.length++
}
return out
}
// Delete removes an item equal to the passed in item from the tree, returning
// it. If no such item exists, returns nil.
func (t *BTree) Delete(item Item) Item {
return t.deleteItem(item, removeItem)
}
// DeleteMin removes the smallest item in the tree and returns it.
// If no such item exists, returns nil.
func (t *BTree) DeleteMin() Item {
return t.deleteItem(nil, removeMin)
}
// DeleteMax removes the largest item in the tree and returns it.
// If no such item exists, returns nil.
func (t *BTree) DeleteMax() Item {
return t.deleteItem(nil, removeMax)
}
func (t *BTree) deleteItem(item Item, typ toRemove) Item {
if t.root == nil || len(t.root.items) == 0 {
return nil
}
out := t.root.remove(item, t.minItems(), typ)
if len(t.root.items) == 0 && len(t.root.children) > 0 {
oldroot := t.root
t.root = t.root.children[0]
t.freeNode(oldroot)
}
if out != nil {
t.length--
}
return out
}
// AscendRange calls the iterator for every value in the tree within the range
// [greaterOrEqual, lessThan), until iterator returns false.
func (t *BTree) AscendRange(greaterOrEqual, lessThan Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(
func(a Item) bool { return !a.Less(greaterOrEqual) },
func(a Item) bool { return a.Less(lessThan) },
iterator)
}
// AscendLessThan calls the iterator for every value in the tree within the range
// [first, pivot), until iterator returns false.
func (t *BTree) AscendLessThan(pivot Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(
func(a Item) bool { return true },
func(a Item) bool { return a.Less(pivot) },
iterator)
}
// AscendGreaterOrEqual calls the iterator for every value in the tree within
// the range [pivot, last], until iterator returns false.
func (t *BTree) AscendGreaterOrEqual(pivot Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(
func(a Item) bool { return !a.Less(pivot) },
func(a Item) bool { return true },
iterator)
}
// Ascend calls the iterator for every value in the tree within the range
// [first, last], until iterator returns false.
func (t *BTree) Ascend(iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(
func(a Item) bool { return true },
func(a Item) bool { return true },
iterator)
}
// Get looks for the key item in the tree, returning it. It returns nil if
// unable to find that item.
func (t *BTree) Get(key Item) Item {
if t.root == nil {
return nil
}
return t.root.get(key)
}
// Min returns the smallest item in the tree, or nil if the tree is empty.
func (t *BTree) Min() Item {
return min(t.root)
}
// Max returns the largest item in the tree, or nil if the tree is empty.
func (t *BTree) Max() Item {
return max(t.root)
}
// Has returns true if the given key is in the tree.
func (t *BTree) Has(key Item) bool {
return t.Get(key) != nil
}
// Len returns the number of items currently in the tree.
func (t *BTree) Len() int {
return t.length
}
// Int implements the Item interface for integers.
type Int int
// Less returns true if int(a) < int(b).
func (a Int) Less(b Item) bool {
return a < b.(Int)
}

76
vendor/github.com/google/btree/btree_mem.go generated vendored Normal file
View File

@ -0,0 +1,76 @@
// Copyright 2014 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build ignore
// This binary compares memory usage between btree and gollrb.
package main
import (
"flag"
"fmt"
"math/rand"
"runtime"
"time"
"github.com/google/btree"
"github.com/petar/GoLLRB/llrb"
)
var (
size = flag.Int("size", 1000000, "size of the tree to build")
degree = flag.Int("degree", 8, "degree of btree")
gollrb = flag.Bool("llrb", false, "use llrb instead of btree")
)
func main() {
flag.Parse()
vals := rand.Perm(*size)
var t, v interface{}
v = vals
var stats runtime.MemStats
for i := 0; i < 10; i++ {
runtime.GC()
}
fmt.Println("-------- BEFORE ----------")
runtime.ReadMemStats(&stats)
fmt.Printf("%+v\n", stats)
start := time.Now()
if *gollrb {
tr := llrb.New()
for _, v := range vals {
tr.ReplaceOrInsert(llrb.Int(v))
}
t = tr // keep it around
} else {
tr := btree.New(*degree)
for _, v := range vals {
tr.ReplaceOrInsert(btree.Int(v))
}
t = tr // keep it around
}
fmt.Printf("%v inserts in %v\n", *size, time.Since(start))
fmt.Println("-------- AFTER ----------")
runtime.ReadMemStats(&stats)
fmt.Printf("%+v\n", stats)
for i := 0; i < 10; i++ {
runtime.GC()
}
fmt.Println("-------- AFTER GC ----------")
runtime.ReadMemStats(&stats)
fmt.Printf("%+v\n", stats)
if t == v {
fmt.Println("to make sure vals and tree aren't GC'd")
}
}

18
vendor/github.com/gregjones/httpcache/.travis.yml generated vendored Normal file
View File

@ -0,0 +1,18 @@
sudo: false
language: go
go:
- 1.6.x
- 1.7.x
- 1.8.x
- master
matrix:
allow_failures:
- go: master
fast_finish: true
install:
- # Do nothing. This is needed to prevent default install action "go get -t -v ./..." from happening here (we want it to happen inside script step).
script:
- go get -t -v ./...
- diff -u <(echo -n) <(gofmt -d .)
- go tool vet .
- go test -v -race ./...

7
vendor/github.com/gregjones/httpcache/LICENSE.txt generated vendored Normal file
View File

@ -0,0 +1,7 @@
Copyright © 2012 Greg Jones (greg.jones@gmail.com)
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

24
vendor/github.com/gregjones/httpcache/README.md generated vendored Normal file
View File

@ -0,0 +1,24 @@
httpcache
=========
[![Build Status](https://travis-ci.org/gregjones/httpcache.svg?branch=master)](https://travis-ci.org/gregjones/httpcache) [![GoDoc](https://godoc.org/github.com/gregjones/httpcache?status.svg)](https://godoc.org/github.com/gregjones/httpcache)
Package httpcache provides a http.RoundTripper implementation that works as a mostly RFC-compliant cache for http responses.
It is only suitable for use as a 'private' cache (i.e. for a web-browser or an API-client and not for a shared proxy).
Cache Backends
--------------
- The built-in 'memory' cache stores responses in an in-memory map.
- [`github.com/gregjones/httpcache/diskcache`](https://github.com/gregjones/httpcache/tree/master/diskcache) provides a filesystem-backed cache using the [diskv](https://github.com/peterbourgon/diskv) library.
- [`github.com/gregjones/httpcache/memcache`](https://github.com/gregjones/httpcache/tree/master/memcache) provides memcache implementations, for both App Engine and 'normal' memcache servers.
- [`sourcegraph.com/sourcegraph/s3cache`](https://sourcegraph.com/github.com/sourcegraph/s3cache) uses Amazon S3 for storage.
- [`github.com/gregjones/httpcache/leveldbcache`](https://github.com/gregjones/httpcache/tree/master/leveldbcache) provides a filesystem-backed cache using [leveldb](https://github.com/syndtr/goleveldb/leveldb).
- [`github.com/die-net/lrucache`](https://github.com/die-net/lrucache) provides an in-memory cache that will evict least-recently used entries.
- [`github.com/die-net/lrucache/twotier`](https://github.com/die-net/lrucache/tree/master/twotier) allows caches to be combined, for example to use lrucache above with a persistent disk-cache.
License
-------
- [MIT License](LICENSE.txt)

View File

@ -0,0 +1,61 @@
// Package diskcache provides an implementation of httpcache.Cache that uses the diskv package
// to supplement an in-memory map with persistent storage
//
package diskcache
import (
"bytes"
"crypto/md5"
"encoding/hex"
"github.com/peterbourgon/diskv"
"io"
)
// Cache is an implementation of httpcache.Cache that supplements the in-memory map with persistent storage
type Cache struct {
d *diskv.Diskv
}
// Get returns the response corresponding to key if present
func (c *Cache) Get(key string) (resp []byte, ok bool) {
key = keyToFilename(key)
resp, err := c.d.Read(key)
if err != nil {
return []byte{}, false
}
return resp, true
}
// Set saves a response to the cache as key
func (c *Cache) Set(key string, resp []byte) {
key = keyToFilename(key)
c.d.WriteStream(key, bytes.NewReader(resp), true)
}
// Delete removes the response with key from the cache
func (c *Cache) Delete(key string) {
key = keyToFilename(key)
c.d.Erase(key)
}
func keyToFilename(key string) string {
h := md5.New()
io.WriteString(h, key)
return hex.EncodeToString(h.Sum(nil))
}
// New returns a new Cache that will store files in basePath
func New(basePath string) *Cache {
return &Cache{
d: diskv.New(diskv.Options{
BasePath: basePath,
CacheSizeMax: 100 * 1024 * 1024, // 100MB
}),
}
}
// NewWithDiskv returns a new Cache using the provided Diskv as underlying
// storage.
func NewWithDiskv(d *diskv.Diskv) *Cache {
return &Cache{d}
}

553
vendor/github.com/gregjones/httpcache/httpcache.go generated vendored Normal file
View File

@ -0,0 +1,553 @@
// Package httpcache provides a http.RoundTripper implementation that works as a
// mostly RFC-compliant cache for http responses.
//
// It is only suitable for use as a 'private' cache (i.e. for a web-browser or an API-client
// and not for a shared proxy).
//
package httpcache
import (
"bufio"
"bytes"
"errors"
"fmt"
"io"
"io/ioutil"
"net/http"
"net/http/httputil"
"strings"
"sync"
"time"
)
const (
stale = iota
fresh
transparent
// XFromCache is the header added to responses that are returned from the cache
XFromCache = "X-From-Cache"
)
// A Cache interface is used by the Transport to store and retrieve responses.
type Cache interface {
// Get returns the []byte representation of a cached response and a bool
// set to true if the value isn't empty
Get(key string) (responseBytes []byte, ok bool)
// Set stores the []byte representation of a response against a key
Set(key string, responseBytes []byte)
// Delete removes the value associated with the key
Delete(key string)
}
// cacheKey returns the cache key for req.
func cacheKey(req *http.Request) string {
return req.URL.String()
}
// CachedResponse returns the cached http.Response for req if present, and nil
// otherwise.
func CachedResponse(c Cache, req *http.Request) (resp *http.Response, err error) {
cachedVal, ok := c.Get(cacheKey(req))
if !ok {
return
}
b := bytes.NewBuffer(cachedVal)
return http.ReadResponse(bufio.NewReader(b), req)
}
// MemoryCache is an implemtation of Cache that stores responses in an in-memory map.
type MemoryCache struct {
mu sync.RWMutex
items map[string][]byte
}
// Get returns the []byte representation of the response and true if present, false if not
func (c *MemoryCache) Get(key string) (resp []byte, ok bool) {
c.mu.RLock()
resp, ok = c.items[key]
c.mu.RUnlock()
return resp, ok
}
// Set saves response resp to the cache with key
func (c *MemoryCache) Set(key string, resp []byte) {
c.mu.Lock()
c.items[key] = resp
c.mu.Unlock()
}
// Delete removes key from the cache
func (c *MemoryCache) Delete(key string) {
c.mu.Lock()
delete(c.items, key)
c.mu.Unlock()
}
// NewMemoryCache returns a new Cache that will store items in an in-memory map
func NewMemoryCache() *MemoryCache {
c := &MemoryCache{items: map[string][]byte{}}
return c
}
// Transport is an implementation of http.RoundTripper that will return values from a cache
// where possible (avoiding a network request) and will additionally add validators (etag/if-modified-since)
// to repeated requests allowing servers to return 304 / Not Modified
type Transport struct {
// The RoundTripper interface actually used to make requests
// If nil, http.DefaultTransport is used
Transport http.RoundTripper
Cache Cache
// If true, responses returned from the cache will be given an extra header, X-From-Cache
MarkCachedResponses bool
}
// NewTransport returns a new Transport with the
// provided Cache implementation and MarkCachedResponses set to true
func NewTransport(c Cache) *Transport {
return &Transport{Cache: c, MarkCachedResponses: true}
}
// Client returns an *http.Client that caches responses.
func (t *Transport) Client() *http.Client {
return &http.Client{Transport: t}
}
// varyMatches will return false unless all of the cached values for the headers listed in Vary
// match the new request
func varyMatches(cachedResp *http.Response, req *http.Request) bool {
for _, header := range headerAllCommaSepValues(cachedResp.Header, "vary") {
header = http.CanonicalHeaderKey(header)
if header != "" && req.Header.Get(header) != cachedResp.Header.Get("X-Varied-"+header) {
return false
}
}
return true
}
// RoundTrip takes a Request and returns a Response
//
// If there is a fresh Response already in cache, then it will be returned without connecting to
// the server.
//
// If there is a stale Response, then any validators it contains will be set on the new request
// to give the server a chance to respond with NotModified. If this happens, then the cached Response
// will be returned.
func (t *Transport) RoundTrip(req *http.Request) (resp *http.Response, err error) {
cacheKey := cacheKey(req)
cacheable := (req.Method == "GET" || req.Method == "HEAD") && req.Header.Get("range") == ""
var cachedResp *http.Response
if cacheable {
cachedResp, err = CachedResponse(t.Cache, req)
} else {
// Need to invalidate an existing value
t.Cache.Delete(cacheKey)
}
transport := t.Transport
if transport == nil {
transport = http.DefaultTransport
}
if cacheable && cachedResp != nil && err == nil {
if t.MarkCachedResponses {
cachedResp.Header.Set(XFromCache, "1")
}
if varyMatches(cachedResp, req) {
// Can only use cached value if the new request doesn't Vary significantly
freshness := getFreshness(cachedResp.Header, req.Header)
if freshness == fresh {
return cachedResp, nil
}
if freshness == stale {
var req2 *http.Request
// Add validators if caller hasn't already done so
etag := cachedResp.Header.Get("etag")
if etag != "" && req.Header.Get("etag") == "" {
req2 = cloneRequest(req)
req2.Header.Set("if-none-match", etag)
}
lastModified := cachedResp.Header.Get("last-modified")
if lastModified != "" && req.Header.Get("last-modified") == "" {
if req2 == nil {
req2 = cloneRequest(req)
}
req2.Header.Set("if-modified-since", lastModified)
}
if req2 != nil {
req = req2
}
}
}
resp, err = transport.RoundTrip(req)
if err == nil && req.Method == "GET" && resp.StatusCode == http.StatusNotModified {
// Replace the 304 response with the one from cache, but update with some new headers
endToEndHeaders := getEndToEndHeaders(resp.Header)
for _, header := range endToEndHeaders {
cachedResp.Header[header] = resp.Header[header]
}
cachedResp.Status = fmt.Sprintf("%d %s", http.StatusOK, http.StatusText(http.StatusOK))
cachedResp.StatusCode = http.StatusOK
resp = cachedResp
} else if (err != nil || (cachedResp != nil && resp.StatusCode >= 500)) &&
req.Method == "GET" && canStaleOnError(cachedResp.Header, req.Header) {
// In case of transport failure and stale-if-error activated, returns cached content
// when available
cachedResp.Status = fmt.Sprintf("%d %s", http.StatusOK, http.StatusText(http.StatusOK))
cachedResp.StatusCode = http.StatusOK
return cachedResp, nil
} else {
if err != nil || resp.StatusCode != http.StatusOK {
t.Cache.Delete(cacheKey)
}
if err != nil {
return nil, err
}
}
} else {
reqCacheControl := parseCacheControl(req.Header)
if _, ok := reqCacheControl["only-if-cached"]; ok {
resp = newGatewayTimeoutResponse(req)
} else {
resp, err = transport.RoundTrip(req)
if err != nil {
return nil, err
}
}
}
if cacheable && canStore(parseCacheControl(req.Header), parseCacheControl(resp.Header)) {
for _, varyKey := range headerAllCommaSepValues(resp.Header, "vary") {
varyKey = http.CanonicalHeaderKey(varyKey)
fakeHeader := "X-Varied-" + varyKey
reqValue := req.Header.Get(varyKey)
if reqValue != "" {
resp.Header.Set(fakeHeader, reqValue)
}
}
switch req.Method {
case "GET":
// Delay caching until EOF is reached.
resp.Body = &cachingReadCloser{
R: resp.Body,
OnEOF: func(r io.Reader) {
resp := *resp
resp.Body = ioutil.NopCloser(r)
respBytes, err := httputil.DumpResponse(&resp, true)
if err == nil {
t.Cache.Set(cacheKey, respBytes)
}
},
}
default:
respBytes, err := httputil.DumpResponse(resp, true)
if err == nil {
t.Cache.Set(cacheKey, respBytes)
}
}
} else {
t.Cache.Delete(cacheKey)
}
return resp, nil
}
// ErrNoDateHeader indicates that the HTTP headers contained no Date header.
var ErrNoDateHeader = errors.New("no Date header")
// Date parses and returns the value of the Date header.
func Date(respHeaders http.Header) (date time.Time, err error) {
dateHeader := respHeaders.Get("date")
if dateHeader == "" {
err = ErrNoDateHeader
return
}
return time.Parse(time.RFC1123, dateHeader)
}
type realClock struct{}
func (c *realClock) since(d time.Time) time.Duration {
return time.Since(d)
}
type timer interface {
since(d time.Time) time.Duration
}
var clock timer = &realClock{}
// getFreshness will return one of fresh/stale/transparent based on the cache-control
// values of the request and the response
//
// fresh indicates the response can be returned
// stale indicates that the response needs validating before it is returned
// transparent indicates the response should not be used to fulfil the request
//
// Because this is only a private cache, 'public' and 'private' in cache-control aren't
// signficant. Similarly, smax-age isn't used.
func getFreshness(respHeaders, reqHeaders http.Header) (freshness int) {
respCacheControl := parseCacheControl(respHeaders)
reqCacheControl := parseCacheControl(reqHeaders)
if _, ok := reqCacheControl["no-cache"]; ok {
return transparent
}
if _, ok := respCacheControl["no-cache"]; ok {
return stale
}
if _, ok := reqCacheControl["only-if-cached"]; ok {
return fresh
}
date, err := Date(respHeaders)
if err != nil {
return stale
}
currentAge := clock.since(date)
var lifetime time.Duration
var zeroDuration time.Duration
// If a response includes both an Expires header and a max-age directive,
// the max-age directive overrides the Expires header, even if the Expires header is more restrictive.
if maxAge, ok := respCacheControl["max-age"]; ok {
lifetime, err = time.ParseDuration(maxAge + "s")
if err != nil {
lifetime = zeroDuration
}
} else {
expiresHeader := respHeaders.Get("Expires")
if expiresHeader != "" {
expires, err := time.Parse(time.RFC1123, expiresHeader)
if err != nil {
lifetime = zeroDuration
} else {
lifetime = expires.Sub(date)
}
}
}
if maxAge, ok := reqCacheControl["max-age"]; ok {
// the client is willing to accept a response whose age is no greater than the specified time in seconds
lifetime, err = time.ParseDuration(maxAge + "s")
if err != nil {
lifetime = zeroDuration
}
}
if minfresh, ok := reqCacheControl["min-fresh"]; ok {
// the client wants a response that will still be fresh for at least the specified number of seconds.
minfreshDuration, err := time.ParseDuration(minfresh + "s")
if err == nil {
currentAge = time.Duration(currentAge + minfreshDuration)
}
}
if maxstale, ok := reqCacheControl["max-stale"]; ok {
// Indicates that the client is willing to accept a response that has exceeded its expiration time.
// If max-stale is assigned a value, then the client is willing to accept a response that has exceeded
// its expiration time by no more than the specified number of seconds.
// If no value is assigned to max-stale, then the client is willing to accept a stale response of any age.
//
// Responses served only because of a max-stale value are supposed to have a Warning header added to them,
// but that seems like a hassle, and is it actually useful? If so, then there needs to be a different
// return-value available here.
if maxstale == "" {
return fresh
}
maxstaleDuration, err := time.ParseDuration(maxstale + "s")
if err == nil {
currentAge = time.Duration(currentAge - maxstaleDuration)
}
}
if lifetime > currentAge {
return fresh
}
return stale
}
// Returns true if either the request or the response includes the stale-if-error
// cache control extension: https://tools.ietf.org/html/rfc5861
func canStaleOnError(respHeaders, reqHeaders http.Header) bool {
respCacheControl := parseCacheControl(respHeaders)
reqCacheControl := parseCacheControl(reqHeaders)
var err error
lifetime := time.Duration(-1)
if staleMaxAge, ok := respCacheControl["stale-if-error"]; ok {
if staleMaxAge != "" {
lifetime, err = time.ParseDuration(staleMaxAge + "s")
if err != nil {
return false
}
} else {
return true
}
}
if staleMaxAge, ok := reqCacheControl["stale-if-error"]; ok {
if staleMaxAge != "" {
lifetime, err = time.ParseDuration(staleMaxAge + "s")
if err != nil {
return false
}
} else {
return true
}
}
if lifetime >= 0 {
date, err := Date(respHeaders)
if err != nil {
return false
}
currentAge := clock.since(date)
if lifetime > currentAge {
return true
}
}
return false
}
func getEndToEndHeaders(respHeaders http.Header) []string {
// These headers are always hop-by-hop
hopByHopHeaders := map[string]struct{}{
"Connection": struct{}{},
"Keep-Alive": struct{}{},
"Proxy-Authenticate": struct{}{},
"Proxy-Authorization": struct{}{},
"Te": struct{}{},
"Trailers": struct{}{},
"Transfer-Encoding": struct{}{},
"Upgrade": struct{}{},
}
for _, extra := range strings.Split(respHeaders.Get("connection"), ",") {
// any header listed in connection, if present, is also considered hop-by-hop
if strings.Trim(extra, " ") != "" {
hopByHopHeaders[http.CanonicalHeaderKey(extra)] = struct{}{}
}
}
endToEndHeaders := []string{}
for respHeader, _ := range respHeaders {
if _, ok := hopByHopHeaders[respHeader]; !ok {
endToEndHeaders = append(endToEndHeaders, respHeader)
}
}
return endToEndHeaders
}
func canStore(reqCacheControl, respCacheControl cacheControl) (canStore bool) {
if _, ok := respCacheControl["no-store"]; ok {
return false
}
if _, ok := reqCacheControl["no-store"]; ok {
return false
}
return true
}
func newGatewayTimeoutResponse(req *http.Request) *http.Response {
var braw bytes.Buffer
braw.WriteString("HTTP/1.1 504 Gateway Timeout\r\n\r\n")
resp, err := http.ReadResponse(bufio.NewReader(&braw), req)
if err != nil {
panic(err)
}
return resp
}
// cloneRequest returns a clone of the provided *http.Request.
// The clone is a shallow copy of the struct and its Header map.
// (This function copyright goauth2 authors: https://code.google.com/p/goauth2)
func cloneRequest(r *http.Request) *http.Request {
// shallow copy of the struct
r2 := new(http.Request)
*r2 = *r
// deep copy of the Header
r2.Header = make(http.Header)
for k, s := range r.Header {
r2.Header[k] = s
}
return r2
}
type cacheControl map[string]string
func parseCacheControl(headers http.Header) cacheControl {
cc := cacheControl{}
ccHeader := headers.Get("Cache-Control")
for _, part := range strings.Split(ccHeader, ",") {
part = strings.Trim(part, " ")
if part == "" {
continue
}
if strings.ContainsRune(part, '=') {
keyval := strings.Split(part, "=")
cc[strings.Trim(keyval[0], " ")] = strings.Trim(keyval[1], ",")
} else {
cc[part] = ""
}
}
return cc
}
// headerAllCommaSepValues returns all comma-separated values (each
// with whitespace trimmed) for header name in headers. According to
// Section 4.2 of the HTTP/1.1 spec
// (http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.2),
// values from multiple occurrences of a header should be concatenated, if
// the header's value is a comma-separated list.
func headerAllCommaSepValues(headers http.Header, name string) []string {
var vals []string
for _, val := range headers[http.CanonicalHeaderKey(name)] {
fields := strings.Split(val, ",")
for i, f := range fields {
fields[i] = strings.TrimSpace(f)
}
vals = append(vals, fields...)
}
return vals
}
// cachingReadCloser is a wrapper around ReadCloser R that calls OnEOF
// handler with a full copy of the content read from R when EOF is
// reached.
type cachingReadCloser struct {
// Underlying ReadCloser.
R io.ReadCloser
// OnEOF is called with a copy of the content of R when EOF is reached.
OnEOF func(io.Reader)
buf bytes.Buffer // buf stores a copy of the content of R.
}
// Read reads the next len(p) bytes from R or until R is drained. The
// return value n is the number of bytes read. If R has no data to
// return, err is io.EOF and OnEOF is called with a full copy of what
// has been read so far.
func (r *cachingReadCloser) Read(p []byte) (n int, err error) {
n, err = r.R.Read(p)
r.buf.Write(p[:n])
if err == io.EOF {
r.OnEOF(bytes.NewReader(r.buf.Bytes()))
}
return n, err
}
func (r *cachingReadCloser) Close() error {
return r.R.Close()
}
// NewMemoryCacheTransport returns a new Transport using the in-memory cache implementation
func NewMemoryCacheTransport() *Transport {
c := NewMemoryCache()
t := NewTransport(c)
return t
}

View File

@ -1,11 +0,0 @@
language: go
os:
- linux
- osx
go:
- 1.3
- 1.4
- 1.5
- tip

View File

@ -1,15 +0,0 @@
ISC License
Copyright (c) 2012 Chris Howey
Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

View File

@ -1,384 +0,0 @@
Unless otherwise noted, all files in this distribution are released
under the Common Development and Distribution License (CDDL).
Exceptions are noted within the associated source files.
--------------------------------------------------------------------
COMMON DEVELOPMENT AND DISTRIBUTION LICENSE Version 1.0
1. Definitions.
1.1. "Contributor" means each individual or entity that creates
or contributes to the creation of Modifications.
1.2. "Contributor Version" means the combination of the Original
Software, prior Modifications used by a Contributor (if any),
and the Modifications made by that particular Contributor.
1.3. "Covered Software" means (a) the Original Software, or (b)
Modifications, or (c) the combination of files containing
Original Software with files containing Modifications, in
each case including portions thereof.
1.4. "Executable" means the Covered Software in any form other
than Source Code.
1.5. "Initial Developer" means the individual or entity that first
makes Original Software available under this License.
1.6. "Larger Work" means a work which combines Covered Software or
portions thereof with code not governed by the terms of this
License.
1.7. "License" means this document.
1.8. "Licensable" means having the right to grant, to the maximum
extent possible, whether at the time of the initial grant or
subsequently acquired, any and all of the rights conveyed
herein.
1.9. "Modifications" means the Source Code and Executable form of
any of the following:
A. Any file that results from an addition to, deletion from or
modification of the contents of a file containing Original
Software or previous Modifications;
B. Any new file that contains any part of the Original
Software or previous Modifications; or
C. Any new file that is contributed or otherwise made
available under the terms of this License.
1.10. "Original Software" means the Source Code and Executable
form of computer software code that is originally released
under this License.
1.11. "Patent Claims" means any patent claim(s), now owned or
hereafter acquired, including without limitation, method,
process, and apparatus claims, in any patent Licensable by
grantor.
1.12. "Source Code" means (a) the common form of computer software
code in which modifications are made and (b) associated
documentation included in or with such code.
1.13. "You" (or "Your") means an individual or a legal entity
exercising rights under, and complying with all of the terms
of, this License. For legal entities, "You" includes any
entity which controls, is controlled by, or is under common
control with You. For purposes of this definition,
"control" means (a) the power, direct or indirect, to cause
the direction or management of such entity, whether by
contract or otherwise, or (b) ownership of more than fifty
percent (50%) of the outstanding shares or beneficial
ownership of such entity.
2. License Grants.
2.1. The Initial Developer Grant.
Conditioned upon Your compliance with Section 3.1 below and
subject to third party intellectual property claims, the Initial
Developer hereby grants You a world-wide, royalty-free,
non-exclusive license:
(a) under intellectual property rights (other than patent or
trademark) Licensable by Initial Developer, to use,
reproduce, modify, display, perform, sublicense and
distribute the Original Software (or portions thereof),
with or without Modifications, and/or as part of a Larger
Work; and
(b) under Patent Claims infringed by the making, using or
selling of Original Software, to make, have made, use,
practice, sell, and offer for sale, and/or otherwise
dispose of the Original Software (or portions thereof).
(c) The licenses granted in Sections 2.1(a) and (b) are
effective on the date Initial Developer first distributes
or otherwise makes the Original Software available to a
third party under the terms of this License.
(d) Notwithstanding Section 2.1(b) above, no patent license is
granted: (1) for code that You delete from the Original
Software, or (2) for infringements caused by: (i) the
modification of the Original Software, or (ii) the
combination of the Original Software with other software
or devices.
2.2. Contributor Grant.
Conditioned upon Your compliance with Section 3.1 below and
subject to third party intellectual property claims, each
Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
(a) under intellectual property rights (other than patent or
trademark) Licensable by Contributor to use, reproduce,
modify, display, perform, sublicense and distribute the
Modifications created by such Contributor (or portions
thereof), either on an unmodified basis, with other
Modifications, as Covered Software and/or as part of a
Larger Work; and
(b) under Patent Claims infringed by the making, using, or
selling of Modifications made by that Contributor either
alone and/or in combination with its Contributor Version
(or portions of such combination), to make, use, sell,
offer for sale, have made, and/or otherwise dispose of:
(1) Modifications made by that Contributor (or portions
thereof); and (2) the combination of Modifications made by
that Contributor with its Contributor Version (or portions
of such combination).
(c) The licenses granted in Sections 2.2(a) and 2.2(b) are
effective on the date Contributor first distributes or
otherwise makes the Modifications available to a third
party.
(d) Notwithstanding Section 2.2(b) above, no patent license is
granted: (1) for any code that Contributor has deleted
from the Contributor Version; (2) for infringements caused
by: (i) third party modifications of Contributor Version,
or (ii) the combination of Modifications made by that
Contributor with other software (except as part of the
Contributor Version) or other devices; or (3) under Patent
Claims infringed by Covered Software in the absence of
Modifications made by that Contributor.
3. Distribution Obligations.
3.1. Availability of Source Code.
Any Covered Software that You distribute or otherwise make
available in Executable form must also be made available in Source
Code form and that Source Code form must be distributed only under
the terms of this License. You must include a copy of this
License with every copy of the Source Code form of the Covered
Software You distribute or otherwise make available. You must
inform recipients of any such Covered Software in Executable form
as to how they can obtain such Covered Software in Source Code
form in a reasonable manner on or through a medium customarily
used for software exchange.
3.2. Modifications.
The Modifications that You create or to which You contribute are
governed by the terms of this License. You represent that You
believe Your Modifications are Your original creation(s) and/or
You have sufficient rights to grant the rights conveyed by this
License.
3.3. Required Notices.
You must include a notice in each of Your Modifications that
identifies You as the Contributor of the Modification. You may
not remove or alter any copyright, patent or trademark notices
contained within the Covered Software, or any notices of licensing
or any descriptive text giving attribution to any Contributor or
the Initial Developer.
3.4. Application of Additional Terms.
You may not offer or impose any terms on any Covered Software in
Source Code form that alters or restricts the applicable version
of this License or the recipients' rights hereunder. You may
choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of
Covered Software. However, you may do so only on Your own behalf,
and not on behalf of the Initial Developer or any Contributor.
You must make it absolutely clear that any such warranty, support,
indemnity or liability obligation is offered by You alone, and You
hereby agree to indemnify the Initial Developer and every
Contributor for any liability incurred by the Initial Developer or
such Contributor as a result of warranty, support, indemnity or
liability terms You offer.
3.5. Distribution of Executable Versions.
You may distribute the Executable form of the Covered Software
under the terms of this License or under the terms of a license of
Your choice, which may contain terms different from this License,
provided that You are in compliance with the terms of this License
and that the license for the Executable form does not attempt to
limit or alter the recipient's rights in the Source Code form from
the rights set forth in this License. If You distribute the
Covered Software in Executable form under a different license, You
must make it absolutely clear that any terms which differ from
this License are offered by You alone, not by the Initial
Developer or Contributor. You hereby agree to indemnify the
Initial Developer and every Contributor for any liability incurred
by the Initial Developer or such Contributor as a result of any
such terms You offer.
3.6. Larger Works.
You may create a Larger Work by combining Covered Software with
other code not governed by the terms of this License and
distribute the Larger Work as a single product. In such a case,
You must make sure the requirements of this License are fulfilled
for the Covered Software.
4. Versions of the License.
4.1. New Versions.
Sun Microsystems, Inc. is the initial license steward and may
publish revised and/or new versions of this License from time to
time. Each version will be given a distinguishing version number.
Except as provided in Section 4.3, no one other than the license
steward has the right to modify this License.
4.2. Effect of New Versions.
You may always continue to use, distribute or otherwise make the
Covered Software available under the terms of the version of the
License under which You originally received the Covered Software.
If the Initial Developer includes a notice in the Original
Software prohibiting it from being distributed or otherwise made
available under any subsequent version of the License, You must
distribute and make the Covered Software available under the terms
of the version of the License under which You originally received
the Covered Software. Otherwise, You may also choose to use,
distribute or otherwise make the Covered Software available under
the terms of any subsequent version of the License published by
the license steward.
4.3. Modified Versions.
When You are an Initial Developer and You want to create a new
license for Your Original Software, You may create and use a
modified version of this License if You: (a) rename the license
and remove any references to the name of the license steward
(except to note that the license differs from this License); and
(b) otherwise make it clear that the license contains terms which
differ from this License.
5. DISCLAIMER OF WARRANTY.
COVERED SOFTWARE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS"
BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE COVERED
SOFTWARE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR
PURPOSE OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE COVERED SOFTWARE IS WITH YOU. SHOULD ANY
COVERED SOFTWARE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT THE
INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY
NECESSARY SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF
WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS LICENSE. NO USE OF
ANY COVERED SOFTWARE IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS
DISCLAIMER.
6. TERMINATION.
6.1. This License and the rights granted hereunder will terminate
automatically if You fail to comply with terms herein and fail to
cure such breach within 30 days of becoming aware of the breach.
Provisions which, by their nature, must remain in effect beyond
the termination of this License shall survive.
6.2. If You assert a patent infringement claim (excluding
declaratory judgment actions) against Initial Developer or a
Contributor (the Initial Developer or Contributor against whom You
assert such claim is referred to as "Participant") alleging that
the Participant Software (meaning the Contributor Version where
the Participant is a Contributor or the Original Software where
the Participant is the Initial Developer) directly or indirectly
infringes any patent, then any and all rights granted directly or
indirectly to You by such Participant, the Initial Developer (if
the Initial Developer is not the Participant) and all Contributors
under Sections 2.1 and/or 2.2 of this License shall, upon 60 days
notice from Participant terminate prospectively and automatically
at the expiration of such 60 day notice period, unless if within
such 60 day period You withdraw Your claim with respect to the
Participant Software against such Participant either unilaterally
or pursuant to a written agreement with Participant.
6.3. In the event of termination under Sections 6.1 or 6.2 above,
all end user licenses that have been validly granted by You or any
distributor hereunder prior to termination (excluding licenses
granted to You by any distributor) shall survive termination.
7. LIMITATION OF LIABILITY.
UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER TORT
(INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE, SHALL YOU, THE
INITIAL DEVELOPER, ANY OTHER CONTRIBUTOR, OR ANY DISTRIBUTOR OF
COVERED SOFTWARE, OR ANY SUPPLIER OF ANY OF SUCH PARTIES, BE
LIABLE TO ANY PERSON FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES OF ANY CHARACTER INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOST PROFITS, LOSS OF GOODWILL, WORK
STOPPAGE, COMPUTER FAILURE OR MALFUNCTION, OR ANY AND ALL OTHER
COMMERCIAL DAMAGES OR LOSSES, EVEN IF SUCH PARTY SHALL HAVE BEEN
INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION OF
LIABILITY SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL
INJURY RESULTING FROM SUCH PARTY'S NEGLIGENCE TO THE EXTENT
APPLICABLE LAW PROHIBITS SUCH LIMITATION. SOME JURISDICTIONS DO
NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR
CONSEQUENTIAL DAMAGES, SO THIS EXCLUSION AND LIMITATION MAY NOT
APPLY TO YOU.
8. U.S. GOVERNMENT END USERS.
The Covered Software is a "commercial item," as that term is
defined in 48 C.F.R. 2.101 (Oct. 1995), consisting of "commercial
computer software" (as that term is defined at 48
C.F.R. 252.227-7014(a)(1)) and "commercial computer software
documentation" as such terms are used in 48 C.F.R. 12.212
(Sept. 1995). Consistent with 48 C.F.R. 12.212 and 48
C.F.R. 227.7202-1 through 227.7202-4 (June 1995), all
U.S. Government End Users acquire Covered Software with only those
rights set forth herein. This U.S. Government Rights clause is in
lieu of, and supersedes, any other FAR, DFAR, or other clause or
provision that addresses Government rights in computer software
under this License.
9. MISCELLANEOUS.
This License represents the complete agreement concerning subject
matter hereof. If any provision of this License is held to be
unenforceable, such provision shall be reformed only to the extent
necessary to make it enforceable. This License shall be governed
by the law of the jurisdiction specified in a notice contained
within the Original Software (except to the extent applicable law,
if any, provides otherwise), excluding such jurisdiction's
conflict-of-law provisions. Any litigation relating to this
License shall be subject to the jurisdiction of the courts located
in the jurisdiction and venue specified in a notice contained
within the Original Software, with the losing party responsible
for costs, including, without limitation, court costs and
reasonable attorneys' fees and expenses. The application of the
United Nations Convention on Contracts for the International Sale
of Goods is expressly excluded. Any law or regulation which
provides that the language of a contract shall be construed
against the drafter shall not apply to this License. You agree
that You alone are responsible for compliance with the United
States export administration regulations (and the export control
laws and regulation of any other countries) when You use,
distribute or otherwise make available any Covered Software.
10. RESPONSIBILITY FOR CLAIMS.
As between Initial Developer and the Contributors, each party is
responsible for claims and damages arising, directly or
indirectly, out of its utilization of rights under this License
and You agree to work with Initial Developer and Contributors to
distribute such responsibility on an equitable basis. Nothing
herein is intended or shall be deemed to constitute any admission
of liability.
--------------------------------------------------------------------
NOTICE PURSUANT TO SECTION 9 OF THE COMMON DEVELOPMENT AND
DISTRIBUTION LICENSE (CDDL)
For Covered Software in this distribution, this License shall
be governed by the laws of the State of California (excluding
conflict-of-law provisions).
Any litigation relating to this License shall be subject to the
jurisdiction of the Federal Courts of the Northern District of
California and the state courts of the State of California, with
venue lying in Santa Clara County, California.

View File

@ -1,27 +0,0 @@
# getpasswd in Go [![GoDoc](https://godoc.org/github.com/howeyc/gopass?status.svg)](https://godoc.org/github.com/howeyc/gopass) [![Build Status](https://secure.travis-ci.org/howeyc/gopass.png?branch=master)](http://travis-ci.org/howeyc/gopass)
Retrieve password from user terminal or piped input without echo.
Verified on BSD, Linux, and Windows.
Example:
```go
package main
import "fmt"
import "github.com/howeyc/gopass"
func main() {
fmt.Printf("Password: ")
// Silent. For printing *'s use gopass.GetPasswdMasked()
pass, err := gopass.GetPasswd()
if err != nil {
// Handle gopass.ErrInterrupted or getch() read error
}
// Do something with pass
}
```
Caution: Multi-byte characters not supported!

View File

@ -1,110 +0,0 @@
package gopass
import (
"errors"
"fmt"
"io"
"os"
)
type FdReader interface {
io.Reader
Fd() uintptr
}
var defaultGetCh = func(r io.Reader) (byte, error) {
buf := make([]byte, 1)
if n, err := r.Read(buf); n == 0 || err != nil {
if err != nil {
return 0, err
}
return 0, io.EOF
}
return buf[0], nil
}
var (
maxLength = 512
ErrInterrupted = errors.New("interrupted")
ErrMaxLengthExceeded = fmt.Errorf("maximum byte limit (%v) exceeded", maxLength)
// Provide variable so that tests can provide a mock implementation.
getch = defaultGetCh
)
// getPasswd returns the input read from terminal.
// If prompt is not empty, it will be output as a prompt to the user
// If masked is true, typing will be matched by asterisks on the screen.
// Otherwise, typing will echo nothing.
func getPasswd(prompt string, masked bool, r FdReader, w io.Writer) ([]byte, error) {
var err error
var pass, bs, mask []byte
if masked {
bs = []byte("\b \b")
mask = []byte("*")
}
if isTerminal(r.Fd()) {
if oldState, err := makeRaw(r.Fd()); err != nil {
return pass, err
} else {
defer func() {
restore(r.Fd(), oldState)
fmt.Fprintln(w)
}()
}
}
if prompt != "" {
fmt.Fprint(w, prompt)
}
// Track total bytes read, not just bytes in the password. This ensures any
// errors that might flood the console with nil or -1 bytes infinitely are
// capped.
var counter int
for counter = 0; counter <= maxLength; counter++ {
if v, e := getch(r); e != nil {
err = e
break
} else if v == 127 || v == 8 {
if l := len(pass); l > 0 {
pass = pass[:l-1]
fmt.Fprint(w, string(bs))
}
} else if v == 13 || v == 10 {
break
} else if v == 3 {
err = ErrInterrupted
break
} else if v != 0 {
pass = append(pass, v)
fmt.Fprint(w, string(mask))
}
}
if counter > maxLength {
err = ErrMaxLengthExceeded
}
return pass, err
}
// GetPasswd returns the password read from the terminal without echoing input.
// The returned byte array does not include end-of-line characters.
func GetPasswd() ([]byte, error) {
return getPasswd("", false, os.Stdin, os.Stdout)
}
// GetPasswdMasked returns the password read from the terminal, echoing asterisks.
// The returned byte array does not include end-of-line characters.
func GetPasswdMasked() ([]byte, error) {
return getPasswd("", true, os.Stdin, os.Stdout)
}
// GetPasswdPrompt prompts the user and returns the password read from the terminal.
// If mask is true, then asterisks are echoed.
// The returned byte array does not include end-of-line characters.
func GetPasswdPrompt(prompt string, mask bool, r FdReader, w io.Writer) ([]byte, error) {
return getPasswd(prompt, mask, r, w)
}

View File

@ -1,25 +0,0 @@
// +build !solaris
package gopass
import "golang.org/x/crypto/ssh/terminal"
type terminalState struct {
state *terminal.State
}
func isTerminal(fd uintptr) bool {
return terminal.IsTerminal(int(fd))
}
func makeRaw(fd uintptr) (*terminalState, error) {
state, err := terminal.MakeRaw(int(fd))
return &terminalState{
state: state,
}, err
}
func restore(fd uintptr, oldState *terminalState) error {
return terminal.Restore(int(fd), oldState.state)
}

View File

@ -1,69 +0,0 @@
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
// Below is derived from Solaris source, so CDDL license is included.
package gopass
import (
"syscall"
"golang.org/x/sys/unix"
)
type terminalState struct {
state *unix.Termios
}
// isTerminal returns true if there is a terminal attached to the given
// file descriptor.
// Source: http://src.illumos.org/source/xref/illumos-gate/usr/src/lib/libbc/libc/gen/common/isatty.c
func isTerminal(fd uintptr) bool {
var termio unix.Termio
err := unix.IoctlSetTermio(int(fd), unix.TCGETA, &termio)
return err == nil
}
// makeRaw puts the terminal connected to the given file descriptor into raw
// mode and returns the previous state of the terminal so that it can be
// restored.
// Source: http://src.illumos.org/source/xref/illumos-gate/usr/src/lib/libast/common/uwin/getpass.c
func makeRaw(fd uintptr) (*terminalState, error) {
oldTermiosPtr, err := unix.IoctlGetTermios(int(fd), unix.TCGETS)
if err != nil {
return nil, err
}
oldTermios := *oldTermiosPtr
newTermios := oldTermios
newTermios.Lflag &^= syscall.ECHO | syscall.ECHOE | syscall.ECHOK | syscall.ECHONL
if err := unix.IoctlSetTermios(int(fd), unix.TCSETS, &newTermios); err != nil {
return nil, err
}
return &terminalState{
state: oldTermiosPtr,
}, nil
}
func restore(fd uintptr, oldState *terminalState) error {
return unix.IoctlSetTermios(int(fd), unix.TCSETS, oldState.state)
}

View File

@ -2,32 +2,26 @@
[[projects]]
name = "github.com/davecgh/go-spew"
packages = ["spew"]
revision = "346938d642f2ec3594ed81d874461961cd0faa76"
version = "v1.1.0"
[[projects]]
branch = "master"
name = "github.com/google/gofuzz"
name = "github.com/json-iterator/go"
packages = ["."]
revision = "24818f796faf91cd76ec7bddd72458fbced7a6c1"
revision = "ca39e5af3ece67bbcda3d0f4f56a8e24d9f2dad4"
version = "1.1.3"
[[projects]]
name = "github.com/pmezard/go-difflib"
packages = ["difflib"]
revision = "792786c7400a136282c1664665ae0a8db921c6c2"
version = "v1.0.0"
name = "github.com/modern-go/concurrent"
packages = ["."]
revision = "e0a39a4cb4216ea8db28e22a69f4ec25610d513a"
version = "1.0.0"
[[projects]]
name = "github.com/stretchr/testify"
packages = ["assert","require"]
revision = "69483b4bd14f5845b5a1e55bca19e954e827f1d0"
version = "v1.1.4"
name = "github.com/modern-go/reflect2"
packages = ["."]
revision = "1df9eeb2bb81f327b96228865c5687bc2194af3f"
version = "1.0.0"
[solve-meta]
analyzer-name = "dep"
analyzer-version = 1
inputs-digest = "f8b7cf3941d3792cbbd570bb53c093adaf774334d1162c651565c97a58dc9d09"
inputs-digest = "56a0b9e9e61d2bc8af5e1b68537401b7f4d60805eda3d107058f3171aa5cf793"
solver-name = "gps-cdcl"
solver-version = 1

View File

@ -19,15 +19,8 @@
# name = "github.com/x/y"
# version = "2.4.0"
ignored = ["github.com/davecgh/go-spew*","github.com/google/gofuzz*","github.com/stretchr/testify*"]
[[constraint]]
name = "github.com/davecgh/go-spew"
version = "1.1.0"
[[constraint]]
branch = "master"
name = "github.com/google/gofuzz"
[[constraint]]
name = "github.com/stretchr/testify"
version = "1.1.4"
name = "github.com/modern-go/reflect2"
version = "1.0.0"

View File

@ -8,6 +8,8 @@
A high-performance 100% compatible drop-in replacement of "encoding/json"
You can also use thrift like JSON using [thrift-iterator](https://github.com/thrift-iterator/go)
```
Go开发者们请加入我们滴滴出行平台技术部 taowen@didichuxing.com
```
@ -29,6 +31,9 @@ Raw Result (easyjson requires static code generation)
| easyjson encode | 883 ns/op | 576 B/op | 3 allocs/op |
| jsoniter encode | 837 ns/op | 384 B/op | 4 allocs/op |
Always benchmark with your own workload.
The result depends heavily on the data input.
# Usage
100% compatibility with standard lib

View File

@ -16,15 +16,6 @@ func Unmarshal(data []byte, v interface{}) error {
return ConfigDefault.Unmarshal(data, v)
}
func lastNotSpacePos(data []byte) int {
for i := len(data) - 1; i >= 0; i-- {
if data[i] != ' ' && data[i] != '\t' && data[i] != '\r' && data[i] != '\n' {
return i + 1
}
}
return 0
}
// UnmarshalFromString convenient method to read from string instead of []byte
func UnmarshalFromString(str string, v interface{}) error {
return ConfigDefault.UnmarshalFromString(str, v)
@ -71,6 +62,11 @@ type Decoder struct {
// Decode decode JSON into interface{}
func (adapter *Decoder) Decode(obj interface{}) error {
if adapter.iter.head == adapter.iter.tail && adapter.iter.reader != nil {
if !adapter.iter.loadMore() {
return io.EOF
}
}
adapter.iter.ReadVal(obj)
err := adapter.iter.Error
if err == io.EOF {
@ -81,7 +77,14 @@ func (adapter *Decoder) Decode(obj interface{}) error {
// More is there more?
func (adapter *Decoder) More() bool {
return adapter.iter.head != adapter.iter.tail
iter := adapter.iter
if iter.Error != nil {
return false
}
if iter.head != iter.tail {
return true
}
return iter.loadMore()
}
// Buffered remaining buffer
@ -90,11 +93,21 @@ func (adapter *Decoder) Buffered() io.Reader {
return bytes.NewReader(remaining)
}
// UseNumber for number JSON element, use float64 or json.NumberValue (alias of string)
// UseNumber causes the Decoder to unmarshal a number into an interface{} as a
// Number instead of as a float64.
func (adapter *Decoder) UseNumber() {
origCfg := adapter.iter.cfg.configBeforeFrozen
origCfg.UseNumber = true
adapter.iter.cfg = origCfg.Froze().(*frozenConfig)
cfg := adapter.iter.cfg.configBeforeFrozen
cfg.UseNumber = true
adapter.iter.cfg = cfg.frozeWithCacheReuse()
}
// DisallowUnknownFields causes the Decoder to return an error when the destination
// is a struct and the input contains object keys which do not match any
// non-ignored, exported fields in the destination.
func (adapter *Decoder) DisallowUnknownFields() {
cfg := adapter.iter.cfg.configBeforeFrozen
cfg.DisallowUnknownFields = true
adapter.iter.cfg = cfg.frozeWithCacheReuse()
}
// NewEncoder same as json.NewEncoder
@ -117,14 +130,16 @@ func (adapter *Encoder) Encode(val interface{}) error {
// SetIndent set the indention. Prefix is not supported
func (adapter *Encoder) SetIndent(prefix, indent string) {
adapter.stream.cfg.indentionStep = len(indent)
config := adapter.stream.cfg.configBeforeFrozen
config.IndentionStep = len(indent)
adapter.stream.cfg = config.frozeWithCacheReuse()
}
// SetEscapeHTML escape html by default, set to false to disable
func (adapter *Encoder) SetEscapeHTML(escapeHTML bool) {
config := adapter.stream.cfg.configBeforeFrozen
config.EscapeHTML = escapeHTML
adapter.stream.cfg = config.Froze().(*frozenConfig)
adapter.stream.cfg = config.frozeWithCacheReuse()
}
// Valid reports whether data is a valid JSON encoding.

View File

@ -3,8 +3,11 @@ package jsoniter
import (
"errors"
"fmt"
"github.com/modern-go/reflect2"
"io"
"reflect"
"strconv"
"unsafe"
)
// Any generic object representation.
@ -25,7 +28,6 @@ type Any interface {
ToString() string
ToVal(val interface{})
Get(path ...interface{}) Any
// TODO: add Set
Size() int
Keys() []string
GetInterface() interface{}
@ -35,7 +37,7 @@ type Any interface {
type baseAny struct{}
func (any *baseAny) Get(path ...interface{}) Any {
return &invalidAny{baseAny{}, fmt.Errorf("Get %v from simple value", path)}
return &invalidAny{baseAny{}, fmt.Errorf("GetIndex %v from simple value", path)}
}
func (any *baseAny) Size() int {
@ -89,7 +91,7 @@ func Wrap(val interface{}) Any {
if isAny {
return asAny
}
typ := reflect.TypeOf(val)
typ := reflect2.TypeOf(val)
switch typ.Kind() {
case reflect.Slice:
return wrapArray(val)
@ -100,6 +102,9 @@ func Wrap(val interface{}) Any {
case reflect.String:
return WrapString(val.(string))
case reflect.Int:
if strconv.IntSize == 32 {
return WrapInt32(int32(val.(int)))
}
return WrapInt64(int64(val.(int)))
case reflect.Int8:
return WrapInt32(int32(val.(int8)))
@ -110,7 +115,15 @@ func Wrap(val interface{}) Any {
case reflect.Int64:
return WrapInt64(val.(int64))
case reflect.Uint:
if strconv.IntSize == 32 {
return WrapUint32(uint32(val.(uint)))
}
return WrapUint64(uint64(val.(uint)))
case reflect.Uintptr:
if ptrSize == 32 {
return WrapUint32(uint32(val.(uintptr)))
}
return WrapUint64(uint64(val.(uintptr)))
case reflect.Uint8:
return WrapUint32(uint32(val.(uint8)))
case reflect.Uint16:
@ -243,3 +256,66 @@ func locatePath(iter *Iterator, path []interface{}) Any {
}
return iter.readAny()
}
var anyType = reflect2.TypeOfPtr((*Any)(nil)).Elem()
func createDecoderOfAny(ctx *ctx, typ reflect2.Type) ValDecoder {
if typ == anyType {
return &directAnyCodec{}
}
if typ.Implements(anyType) {
return &anyCodec{
valType: typ,
}
}
return nil
}
func createEncoderOfAny(ctx *ctx, typ reflect2.Type) ValEncoder {
if typ == anyType {
return &directAnyCodec{}
}
if typ.Implements(anyType) {
return &anyCodec{
valType: typ,
}
}
return nil
}
type anyCodec struct {
valType reflect2.Type
}
func (codec *anyCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
panic("not implemented")
}
func (codec *anyCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
obj := codec.valType.UnsafeIndirect(ptr)
any := obj.(Any)
any.WriteTo(stream)
}
func (codec *anyCodec) IsEmpty(ptr unsafe.Pointer) bool {
obj := codec.valType.UnsafeIndirect(ptr)
any := obj.(Any)
return any.Size() == 0
}
type directAnyCodec struct {
}
func (codec *directAnyCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
*(*Any)(ptr) = iter.readAny()
}
func (codec *directAnyCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
any := *(*Any)(ptr)
any.WriteTo(stream)
}
func (codec *directAnyCodec) IsEmpty(ptr unsafe.Pointer) bool {
any := *(*Any)(ptr)
return any.Size() == 0
}

View File

@ -1,6 +1,9 @@
package jsoniter
import "unsafe"
import (
"io"
"unsafe"
)
type numberLazyAny struct {
baseAny
@ -29,7 +32,9 @@ func (any *numberLazyAny) ToInt() int {
iter := any.cfg.BorrowIterator(any.buf)
defer any.cfg.ReturnIterator(iter)
val := iter.ReadInt()
any.err = iter.Error
if iter.Error != nil && iter.Error != io.EOF {
any.err = iter.Error
}
return val
}
@ -37,7 +42,9 @@ func (any *numberLazyAny) ToInt32() int32 {
iter := any.cfg.BorrowIterator(any.buf)
defer any.cfg.ReturnIterator(iter)
val := iter.ReadInt32()
any.err = iter.Error
if iter.Error != nil && iter.Error != io.EOF {
any.err = iter.Error
}
return val
}
@ -45,7 +52,9 @@ func (any *numberLazyAny) ToInt64() int64 {
iter := any.cfg.BorrowIterator(any.buf)
defer any.cfg.ReturnIterator(iter)
val := iter.ReadInt64()
any.err = iter.Error
if iter.Error != nil && iter.Error != io.EOF {
any.err = iter.Error
}
return val
}
@ -53,7 +62,9 @@ func (any *numberLazyAny) ToUint() uint {
iter := any.cfg.BorrowIterator(any.buf)
defer any.cfg.ReturnIterator(iter)
val := iter.ReadUint()
any.err = iter.Error
if iter.Error != nil && iter.Error != io.EOF {
any.err = iter.Error
}
return val
}
@ -61,7 +72,9 @@ func (any *numberLazyAny) ToUint32() uint32 {
iter := any.cfg.BorrowIterator(any.buf)
defer any.cfg.ReturnIterator(iter)
val := iter.ReadUint32()
any.err = iter.Error
if iter.Error != nil && iter.Error != io.EOF {
any.err = iter.Error
}
return val
}
@ -69,7 +82,9 @@ func (any *numberLazyAny) ToUint64() uint64 {
iter := any.cfg.BorrowIterator(any.buf)
defer any.cfg.ReturnIterator(iter)
val := iter.ReadUint64()
any.err = iter.Error
if iter.Error != nil && iter.Error != io.EOF {
any.err = iter.Error
}
return val
}
@ -77,7 +92,9 @@ func (any *numberLazyAny) ToFloat32() float32 {
iter := any.cfg.BorrowIterator(any.buf)
defer any.cfg.ReturnIterator(iter)
val := iter.ReadFloat32()
any.err = iter.Error
if iter.Error != nil && iter.Error != io.EOF {
any.err = iter.Error
}
return val
}
@ -85,7 +102,9 @@ func (any *numberLazyAny) ToFloat64() float64 {
iter := any.cfg.BorrowIterator(any.buf)
defer any.cfg.ReturnIterator(iter)
val := iter.ReadFloat64()
any.err = iter.Error
if iter.Error != nil && iter.Error != io.EOF {
any.err = iter.Error
}
return val
}

View File

@ -14,7 +14,7 @@ func (any *stringAny) Get(path ...interface{}) Any {
if len(path) == 0 {
return any
}
return &invalidAny{baseAny{}, fmt.Errorf("Get %v from simple value", path)}
return &invalidAny{baseAny{}, fmt.Errorf("GetIndex %v from simple value", path)}
}
func (any *stringAny) Parse() *Iterator {

View File

@ -2,11 +2,13 @@ package jsoniter
import (
"encoding/json"
"errors"
"io"
"reflect"
"sync/atomic"
"sync"
"unsafe"
"github.com/modern-go/concurrent"
"github.com/modern-go/reflect2"
)
// Config customize how the API should behave.
@ -17,21 +19,12 @@ type Config struct {
EscapeHTML bool
SortMapKeys bool
UseNumber bool
DisallowUnknownFields bool
TagKey string
OnlyTaggedField bool
ValidateJsonRawMessage bool
ObjectFieldMustBeSimpleString bool
}
type frozenConfig struct {
configBeforeFrozen Config
sortMapKeys bool
indentionStep int
objectFieldMustBeSimpleString bool
decoderCache unsafe.Pointer
encoderCache unsafe.Pointer
extensions []Extension
streamPool chan *Stream
iteratorPool chan *Iterator
CaseSensitive bool
}
// API the public interface of this package.
@ -49,6 +42,8 @@ type API interface {
NewDecoder(reader io.Reader) *Decoder
Valid(data []byte) bool
RegisterExtension(extension Extension)
DecoderOf(typ reflect2.Type) ValDecoder
EncoderOf(typ reflect2.Type) ValEncoder
}
// ConfigDefault the default API
@ -70,35 +65,120 @@ var ConfigFastest = Config{
ObjectFieldMustBeSimpleString: true, // do not unescape object field
}.Froze()
type frozenConfig struct {
configBeforeFrozen Config
sortMapKeys bool
indentionStep int
objectFieldMustBeSimpleString bool
onlyTaggedField bool
disallowUnknownFields bool
decoderCache *concurrent.Map
encoderCache *concurrent.Map
extensions []Extension
streamPool *sync.Pool
iteratorPool *sync.Pool
caseSensitive bool
}
func (cfg *frozenConfig) initCache() {
cfg.decoderCache = concurrent.NewMap()
cfg.encoderCache = concurrent.NewMap()
}
func (cfg *frozenConfig) addDecoderToCache(cacheKey uintptr, decoder ValDecoder) {
cfg.decoderCache.Store(cacheKey, decoder)
}
func (cfg *frozenConfig) addEncoderToCache(cacheKey uintptr, encoder ValEncoder) {
cfg.encoderCache.Store(cacheKey, encoder)
}
func (cfg *frozenConfig) getDecoderFromCache(cacheKey uintptr) ValDecoder {
decoder, found := cfg.decoderCache.Load(cacheKey)
if found {
return decoder.(ValDecoder)
}
return nil
}
func (cfg *frozenConfig) getEncoderFromCache(cacheKey uintptr) ValEncoder {
encoder, found := cfg.encoderCache.Load(cacheKey)
if found {
return encoder.(ValEncoder)
}
return nil
}
var cfgCache = concurrent.NewMap()
func getFrozenConfigFromCache(cfg Config) *frozenConfig {
obj, found := cfgCache.Load(cfg)
if found {
return obj.(*frozenConfig)
}
return nil
}
func addFrozenConfigToCache(cfg Config, frozenConfig *frozenConfig) {
cfgCache.Store(cfg, frozenConfig)
}
// Froze forge API from config
func (cfg Config) Froze() API {
// TODO: cache frozen config
frozenConfig := &frozenConfig{
api := &frozenConfig{
sortMapKeys: cfg.SortMapKeys,
indentionStep: cfg.IndentionStep,
objectFieldMustBeSimpleString: cfg.ObjectFieldMustBeSimpleString,
streamPool: make(chan *Stream, 16),
iteratorPool: make(chan *Iterator, 16),
onlyTaggedField: cfg.OnlyTaggedField,
disallowUnknownFields: cfg.DisallowUnknownFields,
caseSensitive: cfg.CaseSensitive,
}
atomic.StorePointer(&frozenConfig.decoderCache, unsafe.Pointer(&map[string]ValDecoder{}))
atomic.StorePointer(&frozenConfig.encoderCache, unsafe.Pointer(&map[string]ValEncoder{}))
api.streamPool = &sync.Pool{
New: func() interface{} {
return NewStream(api, nil, 512)
},
}
api.iteratorPool = &sync.Pool{
New: func() interface{} {
return NewIterator(api)
},
}
api.initCache()
encoderExtension := EncoderExtension{}
decoderExtension := DecoderExtension{}
if cfg.MarshalFloatWith6Digits {
frozenConfig.marshalFloatWith6Digits()
api.marshalFloatWith6Digits(encoderExtension)
}
if cfg.EscapeHTML {
frozenConfig.escapeHTML()
api.escapeHTML(encoderExtension)
}
if cfg.UseNumber {
frozenConfig.useNumber()
api.useNumber(decoderExtension)
}
if cfg.ValidateJsonRawMessage {
frozenConfig.validateJsonRawMessage()
api.validateJsonRawMessage(encoderExtension)
}
frozenConfig.configBeforeFrozen = cfg
return frozenConfig
if len(encoderExtension) > 0 {
api.extensions = append(api.extensions, encoderExtension)
}
if len(decoderExtension) > 0 {
api.extensions = append(api.extensions, decoderExtension)
}
api.configBeforeFrozen = cfg
return api
}
func (cfg *frozenConfig) validateJsonRawMessage() {
func (cfg Config) frozeWithCacheReuse() *frozenConfig {
api := getFrozenConfigFromCache(cfg)
if api != nil {
return api
}
api = cfg.Froze().(*frozenConfig)
addFrozenConfigToCache(cfg, api)
return api
}
func (cfg *frozenConfig) validateJsonRawMessage(extension EncoderExtension) {
encoder := &funcEncoder{func(ptr unsafe.Pointer, stream *Stream) {
rawMessage := *(*json.RawMessage)(ptr)
iter := cfg.BorrowIterator([]byte(rawMessage))
@ -112,18 +192,23 @@ func (cfg *frozenConfig) validateJsonRawMessage() {
}, func(ptr unsafe.Pointer) bool {
return false
}}
cfg.addEncoderToCache(reflect.TypeOf((*json.RawMessage)(nil)).Elem(), encoder)
cfg.addEncoderToCache(reflect.TypeOf((*RawMessage)(nil)).Elem(), encoder)
extension[reflect2.TypeOfPtr((*json.RawMessage)(nil)).Elem()] = encoder
extension[reflect2.TypeOfPtr((*RawMessage)(nil)).Elem()] = encoder
}
func (cfg *frozenConfig) useNumber() {
cfg.addDecoderToCache(reflect.TypeOf((*interface{})(nil)).Elem(), &funcDecoder{func(ptr unsafe.Pointer, iter *Iterator) {
func (cfg *frozenConfig) useNumber(extension DecoderExtension) {
extension[reflect2.TypeOfPtr((*interface{})(nil)).Elem()] = &funcDecoder{func(ptr unsafe.Pointer, iter *Iterator) {
exitingValue := *((*interface{})(ptr))
if exitingValue != nil && reflect.TypeOf(exitingValue).Kind() == reflect.Ptr {
iter.ReadVal(exitingValue)
return
}
if iter.WhatIsNext() == NumberValue {
*((*interface{})(ptr)) = json.Number(iter.readNumberAsString())
} else {
*((*interface{})(ptr)) = iter.Read()
}
}})
}}
}
func (cfg *frozenConfig) getTagKey() string {
tagKey := cfg.configBeforeFrozen.TagKey
@ -144,10 +229,6 @@ func (encoder *lossyFloat32Encoder) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteFloat32Lossy(*((*float32)(ptr)))
}
func (encoder *lossyFloat32Encoder) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, encoder)
}
func (encoder *lossyFloat32Encoder) IsEmpty(ptr unsafe.Pointer) bool {
return *((*float32)(ptr)) == 0
}
@ -159,20 +240,16 @@ func (encoder *lossyFloat64Encoder) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteFloat64Lossy(*((*float64)(ptr)))
}
func (encoder *lossyFloat64Encoder) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, encoder)
}
func (encoder *lossyFloat64Encoder) IsEmpty(ptr unsafe.Pointer) bool {
return *((*float64)(ptr)) == 0
}
// EnableLossyFloatMarshalling keeps 10**(-6) precision
// for float variables for better performance.
func (cfg *frozenConfig) marshalFloatWith6Digits() {
func (cfg *frozenConfig) marshalFloatWith6Digits(extension EncoderExtension) {
// for better performance
cfg.addEncoderToCache(reflect.TypeOf((*float32)(nil)).Elem(), &lossyFloat32Encoder{})
cfg.addEncoderToCache(reflect.TypeOf((*float64)(nil)).Elem(), &lossyFloat64Encoder{})
extension[reflect2.TypeOfPtr((*float32)(nil)).Elem()] = &lossyFloat32Encoder{}
extension[reflect2.TypeOfPtr((*float64)(nil)).Elem()] = &lossyFloat64Encoder{}
}
type htmlEscapedStringEncoder struct {
@ -183,56 +260,12 @@ func (encoder *htmlEscapedStringEncoder) Encode(ptr unsafe.Pointer, stream *Stre
stream.WriteStringWithHTMLEscaped(str)
}
func (encoder *htmlEscapedStringEncoder) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, encoder)
}
func (encoder *htmlEscapedStringEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return *((*string)(ptr)) == ""
}
func (cfg *frozenConfig) escapeHTML() {
cfg.addEncoderToCache(reflect.TypeOf((*string)(nil)).Elem(), &htmlEscapedStringEncoder{})
}
func (cfg *frozenConfig) addDecoderToCache(cacheKey reflect.Type, decoder ValDecoder) {
done := false
for !done {
ptr := atomic.LoadPointer(&cfg.decoderCache)
cache := *(*map[reflect.Type]ValDecoder)(ptr)
copied := map[reflect.Type]ValDecoder{}
for k, v := range cache {
copied[k] = v
}
copied[cacheKey] = decoder
done = atomic.CompareAndSwapPointer(&cfg.decoderCache, ptr, unsafe.Pointer(&copied))
}
}
func (cfg *frozenConfig) addEncoderToCache(cacheKey reflect.Type, encoder ValEncoder) {
done := false
for !done {
ptr := atomic.LoadPointer(&cfg.encoderCache)
cache := *(*map[reflect.Type]ValEncoder)(ptr)
copied := map[reflect.Type]ValEncoder{}
for k, v := range cache {
copied[k] = v
}
copied[cacheKey] = encoder
done = atomic.CompareAndSwapPointer(&cfg.encoderCache, ptr, unsafe.Pointer(&copied))
}
}
func (cfg *frozenConfig) getDecoderFromCache(cacheKey reflect.Type) ValDecoder {
ptr := atomic.LoadPointer(&cfg.decoderCache)
cache := *(*map[reflect.Type]ValDecoder)(ptr)
return cache[cacheKey]
}
func (cfg *frozenConfig) getEncoderFromCache(cacheKey reflect.Type) ValEncoder {
ptr := atomic.LoadPointer(&cfg.encoderCache)
cache := *(*map[reflect.Type]ValEncoder)(ptr)
return cache[cacheKey]
func (cfg *frozenConfig) escapeHTML(encoderExtension EncoderExtension) {
encoderExtension[reflect2.TypeOfPtr((*string)(nil)).Elem()] = &htmlEscapedStringEncoder{}
}
func (cfg *frozenConfig) cleanDecoders() {
@ -281,24 +314,22 @@ func (cfg *frozenConfig) MarshalIndent(v interface{}, prefix, indent string) ([]
}
newCfg := cfg.configBeforeFrozen
newCfg.IndentionStep = len(indent)
return newCfg.Froze().Marshal(v)
return newCfg.frozeWithCacheReuse().Marshal(v)
}
func (cfg *frozenConfig) UnmarshalFromString(str string, v interface{}) error {
data := []byte(str)
data = data[:lastNotSpacePos(data)]
iter := cfg.BorrowIterator(data)
defer cfg.ReturnIterator(iter)
iter.ReadVal(v)
if iter.head == iter.tail {
iter.loadMore()
}
if iter.Error == io.EOF {
return nil
}
if iter.Error == nil {
iter.ReportError("UnmarshalFromString", "there are bytes left after unmarshal")
c := iter.nextToken()
if c == 0 {
if iter.Error == io.EOF {
return nil
}
return iter.Error
}
iter.ReportError("Unmarshal", "there are bytes left after unmarshal")
return iter.Error
}
@ -309,24 +340,17 @@ func (cfg *frozenConfig) Get(data []byte, path ...interface{}) Any {
}
func (cfg *frozenConfig) Unmarshal(data []byte, v interface{}) error {
data = data[:lastNotSpacePos(data)]
iter := cfg.BorrowIterator(data)
defer cfg.ReturnIterator(iter)
typ := reflect.TypeOf(v)
if typ.Kind() != reflect.Ptr {
// return non-pointer error
return errors.New("the second param must be ptr type")
}
iter.ReadVal(v)
if iter.head == iter.tail {
iter.loadMore()
}
if iter.Error == io.EOF {
return nil
}
if iter.Error == nil {
iter.ReportError("Unmarshal", "there are bytes left after unmarshal")
c := iter.nextToken()
if c == 0 {
if iter.Error == io.EOF {
return nil
}
return iter.Error
}
iter.ReportError("Unmarshal", "there are bytes left after unmarshal")
return iter.Error
}

View File

@ -1,31 +0,0 @@
package jsoniter
import (
"encoding/json"
"strconv"
)
type Number string
// String returns the literal text of the number.
func (n Number) String() string { return string(n) }
// Float64 returns the number as a float64.
func (n Number) Float64() (float64, error) {
return strconv.ParseFloat(string(n), 64)
}
// Int64 returns the number as an int64.
func (n Number) Int64() (int64, error) {
return strconv.ParseInt(string(n), 10, 64)
}
func CastJsonNumber(val interface{}) (string, bool) {
switch typedVal := val.(type) {
case json.Number:
return string(typedVal), true
case Number:
return string(typedVal), true
}
return "", false
}

View File

@ -1,727 +0,0 @@
package jsoniter
import (
"encoding"
"encoding/json"
"fmt"
"reflect"
"time"
"unsafe"
)
// ValDecoder is an internal type registered to cache as needed.
// Don't confuse jsoniter.ValDecoder with json.Decoder.
// For json.Decoder's adapter, refer to jsoniter.AdapterDecoder(todo link).
//
// Reflection on type to create decoders, which is then cached
// Reflection on value is avoided as we can, as the reflect.Value itself will allocate, with following exceptions
// 1. create instance of new value, for example *int will need a int to be allocated
// 2. append to slice, if the existing cap is not enough, allocate will be done using Reflect.New
// 3. assignment to map, both key and value will be reflect.Value
// For a simple struct binding, it will be reflect.Value free and allocation free
type ValDecoder interface {
Decode(ptr unsafe.Pointer, iter *Iterator)
}
// ValEncoder is an internal type registered to cache as needed.
// Don't confuse jsoniter.ValEncoder with json.Encoder.
// For json.Encoder's adapter, refer to jsoniter.AdapterEncoder(todo godoc link).
type ValEncoder interface {
IsEmpty(ptr unsafe.Pointer) bool
Encode(ptr unsafe.Pointer, stream *Stream)
EncodeInterface(val interface{}, stream *Stream)
}
type checkIsEmpty interface {
IsEmpty(ptr unsafe.Pointer) bool
}
// WriteToStream the default implementation for TypeEncoder method EncodeInterface
func WriteToStream(val interface{}, stream *Stream, encoder ValEncoder) {
e := (*emptyInterface)(unsafe.Pointer(&val))
if e.word == nil {
stream.WriteNil()
return
}
if reflect.TypeOf(val).Kind() == reflect.Ptr {
encoder.Encode(unsafe.Pointer(&e.word), stream)
} else {
encoder.Encode(e.word, stream)
}
}
var jsonNumberType reflect.Type
var jsoniterNumberType reflect.Type
var jsonRawMessageType reflect.Type
var jsoniterRawMessageType reflect.Type
var anyType reflect.Type
var marshalerType reflect.Type
var unmarshalerType reflect.Type
var textMarshalerType reflect.Type
var textUnmarshalerType reflect.Type
func init() {
jsonNumberType = reflect.TypeOf((*json.Number)(nil)).Elem()
jsoniterNumberType = reflect.TypeOf((*Number)(nil)).Elem()
jsonRawMessageType = reflect.TypeOf((*json.RawMessage)(nil)).Elem()
jsoniterRawMessageType = reflect.TypeOf((*RawMessage)(nil)).Elem()
anyType = reflect.TypeOf((*Any)(nil)).Elem()
marshalerType = reflect.TypeOf((*json.Marshaler)(nil)).Elem()
unmarshalerType = reflect.TypeOf((*json.Unmarshaler)(nil)).Elem()
textMarshalerType = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
textUnmarshalerType = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem()
}
type OptionalDecoder struct {
ValueType reflect.Type
ValueDecoder ValDecoder
}
func (decoder *OptionalDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
if iter.ReadNil() {
*((*unsafe.Pointer)(ptr)) = nil
} else {
if *((*unsafe.Pointer)(ptr)) == nil {
//pointer to null, we have to allocate memory to hold the value
value := reflect.New(decoder.ValueType)
newPtr := extractInterface(value.Interface()).word
decoder.ValueDecoder.Decode(newPtr, iter)
*((*uintptr)(ptr)) = uintptr(newPtr)
} else {
//reuse existing instance
decoder.ValueDecoder.Decode(*((*unsafe.Pointer)(ptr)), iter)
}
}
}
type deferenceDecoder struct {
// only to deference a pointer
valueType reflect.Type
valueDecoder ValDecoder
}
func (decoder *deferenceDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
if *((*unsafe.Pointer)(ptr)) == nil {
//pointer to null, we have to allocate memory to hold the value
value := reflect.New(decoder.valueType)
newPtr := extractInterface(value.Interface()).word
decoder.valueDecoder.Decode(newPtr, iter)
*((*uintptr)(ptr)) = uintptr(newPtr)
} else {
//reuse existing instance
decoder.valueDecoder.Decode(*((*unsafe.Pointer)(ptr)), iter)
}
}
type OptionalEncoder struct {
ValueEncoder ValEncoder
}
func (encoder *OptionalEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
if *((*unsafe.Pointer)(ptr)) == nil {
stream.WriteNil()
} else {
encoder.ValueEncoder.Encode(*((*unsafe.Pointer)(ptr)), stream)
}
}
func (encoder *OptionalEncoder) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, encoder)
}
func (encoder *OptionalEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return *((*unsafe.Pointer)(ptr)) == nil
}
type optionalMapEncoder struct {
valueEncoder ValEncoder
}
func (encoder *optionalMapEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
if *((*unsafe.Pointer)(ptr)) == nil {
stream.WriteNil()
} else {
encoder.valueEncoder.Encode(*((*unsafe.Pointer)(ptr)), stream)
}
}
func (encoder *optionalMapEncoder) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, encoder)
}
func (encoder *optionalMapEncoder) IsEmpty(ptr unsafe.Pointer) bool {
p := *((*unsafe.Pointer)(ptr))
return p == nil || encoder.valueEncoder.IsEmpty(p)
}
type placeholderEncoder struct {
cfg *frozenConfig
cacheKey reflect.Type
}
func (encoder *placeholderEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
encoder.getRealEncoder().Encode(ptr, stream)
}
func (encoder *placeholderEncoder) EncodeInterface(val interface{}, stream *Stream) {
encoder.getRealEncoder().EncodeInterface(val, stream)
}
func (encoder *placeholderEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return encoder.getRealEncoder().IsEmpty(ptr)
}
func (encoder *placeholderEncoder) getRealEncoder() ValEncoder {
for i := 0; i < 500; i++ {
realDecoder := encoder.cfg.getEncoderFromCache(encoder.cacheKey)
_, isPlaceholder := realDecoder.(*placeholderEncoder)
if isPlaceholder {
time.Sleep(10 * time.Millisecond)
} else {
return realDecoder
}
}
panic(fmt.Sprintf("real encoder not found for cache key: %v", encoder.cacheKey))
}
type placeholderDecoder struct {
cfg *frozenConfig
cacheKey reflect.Type
}
func (decoder *placeholderDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
for i := 0; i < 500; i++ {
realDecoder := decoder.cfg.getDecoderFromCache(decoder.cacheKey)
_, isPlaceholder := realDecoder.(*placeholderDecoder)
if isPlaceholder {
time.Sleep(10 * time.Millisecond)
} else {
realDecoder.Decode(ptr, iter)
return
}
}
panic(fmt.Sprintf("real decoder not found for cache key: %v", decoder.cacheKey))
}
// emptyInterface is the header for an interface{} value.
type emptyInterface struct {
typ unsafe.Pointer
word unsafe.Pointer
}
// emptyInterface is the header for an interface with method (not interface{})
type nonEmptyInterface struct {
// see ../runtime/iface.go:/Itab
itab *struct {
ityp unsafe.Pointer // static interface type
typ unsafe.Pointer // dynamic concrete type
link unsafe.Pointer
bad int32
unused int32
fun [100000]unsafe.Pointer // method table
}
word unsafe.Pointer
}
// ReadVal copy the underlying JSON into go interface, same as json.Unmarshal
func (iter *Iterator) ReadVal(obj interface{}) {
typ := reflect.TypeOf(obj)
cacheKey := typ.Elem()
decoder, err := decoderOfType(iter.cfg, cacheKey)
if err != nil {
iter.Error = err
return
}
e := (*emptyInterface)(unsafe.Pointer(&obj))
decoder.Decode(e.word, iter)
}
// WriteVal copy the go interface into underlying JSON, same as json.Marshal
func (stream *Stream) WriteVal(val interface{}) {
if nil == val {
stream.WriteNil()
return
}
typ := reflect.TypeOf(val)
cacheKey := typ
encoder, err := encoderOfType(stream.cfg, cacheKey)
if err != nil {
stream.Error = err
return
}
encoder.EncodeInterface(val, stream)
}
type prefix string
func (p prefix) addToDecoder(decoder ValDecoder, err error) (ValDecoder, error) {
if err != nil {
return nil, fmt.Errorf("%s: %s", p, err.Error())
}
return decoder, err
}
func (p prefix) addToEncoder(encoder ValEncoder, err error) (ValEncoder, error) {
if err != nil {
return nil, fmt.Errorf("%s: %s", p, err.Error())
}
return encoder, err
}
func decoderOfType(cfg *frozenConfig, typ reflect.Type) (ValDecoder, error) {
cacheKey := typ
decoder := cfg.getDecoderFromCache(cacheKey)
if decoder != nil {
return decoder, nil
}
decoder = getTypeDecoderFromExtension(cfg, typ)
if decoder != nil {
cfg.addDecoderToCache(cacheKey, decoder)
return decoder, nil
}
decoder = &placeholderDecoder{cfg: cfg, cacheKey: cacheKey}
cfg.addDecoderToCache(cacheKey, decoder)
decoder, err := createDecoderOfType(cfg, typ)
for _, extension := range extensions {
decoder = extension.DecorateDecoder(typ, decoder)
}
for _, extension := range cfg.extensions {
decoder = extension.DecorateDecoder(typ, decoder)
}
cfg.addDecoderToCache(cacheKey, decoder)
return decoder, err
}
func createDecoderOfType(cfg *frozenConfig, typ reflect.Type) (ValDecoder, error) {
typeName := typ.String()
if typ == jsonRawMessageType {
return &jsonRawMessageCodec{}, nil
}
if typ == jsoniterRawMessageType {
return &jsoniterRawMessageCodec{}, nil
}
if typ.AssignableTo(jsonNumberType) {
return &jsonNumberCodec{}, nil
}
if typ.AssignableTo(jsoniterNumberType) {
return &jsoniterNumberCodec{}, nil
}
if typ.Implements(unmarshalerType) {
templateInterface := reflect.New(typ).Elem().Interface()
var decoder ValDecoder = &unmarshalerDecoder{extractInterface(templateInterface)}
if typ.Kind() == reflect.Ptr {
decoder = &OptionalDecoder{typ.Elem(), decoder}
}
return decoder, nil
}
if reflect.PtrTo(typ).Implements(unmarshalerType) {
templateInterface := reflect.New(typ).Interface()
var decoder ValDecoder = &unmarshalerDecoder{extractInterface(templateInterface)}
return decoder, nil
}
if typ.Implements(textUnmarshalerType) {
templateInterface := reflect.New(typ).Elem().Interface()
var decoder ValDecoder = &textUnmarshalerDecoder{extractInterface(templateInterface)}
if typ.Kind() == reflect.Ptr {
decoder = &OptionalDecoder{typ.Elem(), decoder}
}
return decoder, nil
}
if reflect.PtrTo(typ).Implements(textUnmarshalerType) {
templateInterface := reflect.New(typ).Interface()
var decoder ValDecoder = &textUnmarshalerDecoder{extractInterface(templateInterface)}
return decoder, nil
}
if typ.Kind() == reflect.Slice && typ.Elem().Kind() == reflect.Uint8 {
sliceDecoder, err := prefix("[slice]").addToDecoder(decoderOfSlice(cfg, typ))
if err != nil {
return nil, err
}
return &base64Codec{sliceDecoder: sliceDecoder}, nil
}
if typ.Implements(anyType) {
return &anyCodec{}, nil
}
switch typ.Kind() {
case reflect.String:
if typeName != "string" {
return decoderOfType(cfg, reflect.TypeOf((*string)(nil)).Elem())
}
return &stringCodec{}, nil
case reflect.Int:
if typeName != "int" {
return decoderOfType(cfg, reflect.TypeOf((*int)(nil)).Elem())
}
return &intCodec{}, nil
case reflect.Int8:
if typeName != "int8" {
return decoderOfType(cfg, reflect.TypeOf((*int8)(nil)).Elem())
}
return &int8Codec{}, nil
case reflect.Int16:
if typeName != "int16" {
return decoderOfType(cfg, reflect.TypeOf((*int16)(nil)).Elem())
}
return &int16Codec{}, nil
case reflect.Int32:
if typeName != "int32" {
return decoderOfType(cfg, reflect.TypeOf((*int32)(nil)).Elem())
}
return &int32Codec{}, nil
case reflect.Int64:
if typeName != "int64" {
return decoderOfType(cfg, reflect.TypeOf((*int64)(nil)).Elem())
}
return &int64Codec{}, nil
case reflect.Uint:
if typeName != "uint" {
return decoderOfType(cfg, reflect.TypeOf((*uint)(nil)).Elem())
}
return &uintCodec{}, nil
case reflect.Uint8:
if typeName != "uint8" {
return decoderOfType(cfg, reflect.TypeOf((*uint8)(nil)).Elem())
}
return &uint8Codec{}, nil
case reflect.Uint16:
if typeName != "uint16" {
return decoderOfType(cfg, reflect.TypeOf((*uint16)(nil)).Elem())
}
return &uint16Codec{}, nil
case reflect.Uint32:
if typeName != "uint32" {
return decoderOfType(cfg, reflect.TypeOf((*uint32)(nil)).Elem())
}
return &uint32Codec{}, nil
case reflect.Uintptr:
if typeName != "uintptr" {
return decoderOfType(cfg, reflect.TypeOf((*uintptr)(nil)).Elem())
}
return &uintptrCodec{}, nil
case reflect.Uint64:
if typeName != "uint64" {
return decoderOfType(cfg, reflect.TypeOf((*uint64)(nil)).Elem())
}
return &uint64Codec{}, nil
case reflect.Float32:
if typeName != "float32" {
return decoderOfType(cfg, reflect.TypeOf((*float32)(nil)).Elem())
}
return &float32Codec{}, nil
case reflect.Float64:
if typeName != "float64" {
return decoderOfType(cfg, reflect.TypeOf((*float64)(nil)).Elem())
}
return &float64Codec{}, nil
case reflect.Bool:
if typeName != "bool" {
return decoderOfType(cfg, reflect.TypeOf((*bool)(nil)).Elem())
}
return &boolCodec{}, nil
case reflect.Interface:
if typ.NumMethod() == 0 {
return &emptyInterfaceCodec{}, nil
}
return &nonEmptyInterfaceCodec{}, nil
case reflect.Struct:
return prefix(fmt.Sprintf("[%s]", typeName)).addToDecoder(decoderOfStruct(cfg, typ))
case reflect.Array:
return prefix("[array]").addToDecoder(decoderOfArray(cfg, typ))
case reflect.Slice:
return prefix("[slice]").addToDecoder(decoderOfSlice(cfg, typ))
case reflect.Map:
return prefix("[map]").addToDecoder(decoderOfMap(cfg, typ))
case reflect.Ptr:
return prefix("[optional]").addToDecoder(decoderOfOptional(cfg, typ))
default:
return nil, fmt.Errorf("unsupported type: %v", typ)
}
}
func encoderOfType(cfg *frozenConfig, typ reflect.Type) (ValEncoder, error) {
cacheKey := typ
encoder := cfg.getEncoderFromCache(cacheKey)
if encoder != nil {
return encoder, nil
}
encoder = getTypeEncoderFromExtension(cfg, typ)
if encoder != nil {
cfg.addEncoderToCache(cacheKey, encoder)
return encoder, nil
}
encoder = &placeholderEncoder{cfg: cfg, cacheKey: cacheKey}
cfg.addEncoderToCache(cacheKey, encoder)
encoder, err := createEncoderOfType(cfg, typ)
for _, extension := range extensions {
encoder = extension.DecorateEncoder(typ, encoder)
}
for _, extension := range cfg.extensions {
encoder = extension.DecorateEncoder(typ, encoder)
}
cfg.addEncoderToCache(cacheKey, encoder)
return encoder, err
}
func createEncoderOfType(cfg *frozenConfig, typ reflect.Type) (ValEncoder, error) {
if typ == jsonRawMessageType {
return &jsonRawMessageCodec{}, nil
}
if typ == jsoniterRawMessageType {
return &jsoniterRawMessageCodec{}, nil
}
if typ.AssignableTo(jsonNumberType) {
return &jsonNumberCodec{}, nil
}
if typ.AssignableTo(jsoniterNumberType) {
return &jsoniterNumberCodec{}, nil
}
if typ.Implements(marshalerType) {
checkIsEmpty, err := createCheckIsEmpty(cfg, typ)
if err != nil {
return nil, err
}
templateInterface := reflect.New(typ).Elem().Interface()
var encoder ValEncoder = &marshalerEncoder{
templateInterface: extractInterface(templateInterface),
checkIsEmpty: checkIsEmpty,
}
if typ.Kind() == reflect.Ptr {
encoder = &OptionalEncoder{encoder}
}
return encoder, nil
}
if reflect.PtrTo(typ).Implements(marshalerType) {
checkIsEmpty, err := createCheckIsEmpty(cfg, reflect.PtrTo(typ))
if err != nil {
return nil, err
}
templateInterface := reflect.New(typ).Interface()
var encoder ValEncoder = &marshalerEncoder{
templateInterface: extractInterface(templateInterface),
checkIsEmpty: checkIsEmpty,
}
return encoder, nil
}
if typ.Implements(textMarshalerType) {
checkIsEmpty, err := createCheckIsEmpty(cfg, typ)
if err != nil {
return nil, err
}
templateInterface := reflect.New(typ).Elem().Interface()
var encoder ValEncoder = &textMarshalerEncoder{
templateInterface: extractInterface(templateInterface),
checkIsEmpty: checkIsEmpty,
}
if typ.Kind() == reflect.Ptr {
encoder = &OptionalEncoder{encoder}
}
return encoder, nil
}
if typ.Kind() == reflect.Slice && typ.Elem().Kind() == reflect.Uint8 {
return &base64Codec{}, nil
}
if typ.Implements(anyType) {
return &anyCodec{}, nil
}
return createEncoderOfSimpleType(cfg, typ)
}
func createCheckIsEmpty(cfg *frozenConfig, typ reflect.Type) (checkIsEmpty, error) {
kind := typ.Kind()
switch kind {
case reflect.String:
return &stringCodec{}, nil
case reflect.Int:
return &intCodec{}, nil
case reflect.Int8:
return &int8Codec{}, nil
case reflect.Int16:
return &int16Codec{}, nil
case reflect.Int32:
return &int32Codec{}, nil
case reflect.Int64:
return &int64Codec{}, nil
case reflect.Uint:
return &uintCodec{}, nil
case reflect.Uint8:
return &uint8Codec{}, nil
case reflect.Uint16:
return &uint16Codec{}, nil
case reflect.Uint32:
return &uint32Codec{}, nil
case reflect.Uintptr:
return &uintptrCodec{}, nil
case reflect.Uint64:
return &uint64Codec{}, nil
case reflect.Float32:
return &float32Codec{}, nil
case reflect.Float64:
return &float64Codec{}, nil
case reflect.Bool:
return &boolCodec{}, nil
case reflect.Interface:
if typ.NumMethod() == 0 {
return &emptyInterfaceCodec{}, nil
}
return &nonEmptyInterfaceCodec{}, nil
case reflect.Struct:
return &structEncoder{}, nil
case reflect.Array:
return &arrayEncoder{}, nil
case reflect.Slice:
return &sliceEncoder{}, nil
case reflect.Map:
return encoderOfMap(cfg, typ)
case reflect.Ptr:
return &OptionalEncoder{}, nil
default:
return nil, fmt.Errorf("unsupported type: %v", typ)
}
}
func createEncoderOfSimpleType(cfg *frozenConfig, typ reflect.Type) (ValEncoder, error) {
typeName := typ.String()
kind := typ.Kind()
switch kind {
case reflect.String:
if typeName != "string" {
return encoderOfType(cfg, reflect.TypeOf((*string)(nil)).Elem())
}
return &stringCodec{}, nil
case reflect.Int:
if typeName != "int" {
return encoderOfType(cfg, reflect.TypeOf((*int)(nil)).Elem())
}
return &intCodec{}, nil
case reflect.Int8:
if typeName != "int8" {
return encoderOfType(cfg, reflect.TypeOf((*int8)(nil)).Elem())
}
return &int8Codec{}, nil
case reflect.Int16:
if typeName != "int16" {
return encoderOfType(cfg, reflect.TypeOf((*int16)(nil)).Elem())
}
return &int16Codec{}, nil
case reflect.Int32:
if typeName != "int32" {
return encoderOfType(cfg, reflect.TypeOf((*int32)(nil)).Elem())
}
return &int32Codec{}, nil
case reflect.Int64:
if typeName != "int64" {
return encoderOfType(cfg, reflect.TypeOf((*int64)(nil)).Elem())
}
return &int64Codec{}, nil
case reflect.Uint:
if typeName != "uint" {
return encoderOfType(cfg, reflect.TypeOf((*uint)(nil)).Elem())
}
return &uintCodec{}, nil
case reflect.Uint8:
if typeName != "uint8" {
return encoderOfType(cfg, reflect.TypeOf((*uint8)(nil)).Elem())
}
return &uint8Codec{}, nil
case reflect.Uint16:
if typeName != "uint16" {
return encoderOfType(cfg, reflect.TypeOf((*uint16)(nil)).Elem())
}
return &uint16Codec{}, nil
case reflect.Uint32:
if typeName != "uint32" {
return encoderOfType(cfg, reflect.TypeOf((*uint32)(nil)).Elem())
}
return &uint32Codec{}, nil
case reflect.Uintptr:
if typeName != "uintptr" {
return encoderOfType(cfg, reflect.TypeOf((*uintptr)(nil)).Elem())
}
return &uintptrCodec{}, nil
case reflect.Uint64:
if typeName != "uint64" {
return encoderOfType(cfg, reflect.TypeOf((*uint64)(nil)).Elem())
}
return &uint64Codec{}, nil
case reflect.Float32:
if typeName != "float32" {
return encoderOfType(cfg, reflect.TypeOf((*float32)(nil)).Elem())
}
return &float32Codec{}, nil
case reflect.Float64:
if typeName != "float64" {
return encoderOfType(cfg, reflect.TypeOf((*float64)(nil)).Elem())
}
return &float64Codec{}, nil
case reflect.Bool:
if typeName != "bool" {
return encoderOfType(cfg, reflect.TypeOf((*bool)(nil)).Elem())
}
return &boolCodec{}, nil
case reflect.Interface:
if typ.NumMethod() == 0 {
return &emptyInterfaceCodec{}, nil
}
return &nonEmptyInterfaceCodec{}, nil
case reflect.Struct:
return prefix(fmt.Sprintf("[%s]", typeName)).addToEncoder(encoderOfStruct(cfg, typ))
case reflect.Array:
return prefix("[array]").addToEncoder(encoderOfArray(cfg, typ))
case reflect.Slice:
return prefix("[slice]").addToEncoder(encoderOfSlice(cfg, typ))
case reflect.Map:
return prefix("[map]").addToEncoder(encoderOfMap(cfg, typ))
case reflect.Ptr:
return prefix("[optional]").addToEncoder(encoderOfOptional(cfg, typ))
default:
return nil, fmt.Errorf("unsupported type: %v", typ)
}
}
func decoderOfOptional(cfg *frozenConfig, typ reflect.Type) (ValDecoder, error) {
elemType := typ.Elem()
decoder, err := decoderOfType(cfg, elemType)
if err != nil {
return nil, err
}
return &OptionalDecoder{elemType, decoder}, nil
}
func encoderOfOptional(cfg *frozenConfig, typ reflect.Type) (ValEncoder, error) {
elemType := typ.Elem()
elemEncoder, err := encoderOfType(cfg, elemType)
if err != nil {
return nil, err
}
encoder := &OptionalEncoder{elemEncoder}
if elemType.Kind() == reflect.Map {
encoder = &OptionalEncoder{encoder}
}
return encoder, nil
}
func decoderOfMap(cfg *frozenConfig, typ reflect.Type) (ValDecoder, error) {
decoder, err := decoderOfType(cfg, typ.Elem())
if err != nil {
return nil, err
}
mapInterface := reflect.New(typ).Interface()
return &mapDecoder{typ, typ.Key(), typ.Elem(), decoder, extractInterface(mapInterface)}, nil
}
func extractInterface(val interface{}) emptyInterface {
return *((*emptyInterface)(unsafe.Pointer(&val)))
}
func encoderOfMap(cfg *frozenConfig, typ reflect.Type) (ValEncoder, error) {
elemType := typ.Elem()
encoder, err := encoderOfType(cfg, elemType)
if err != nil {
return nil, err
}
mapInterface := reflect.New(typ).Elem().Interface()
if cfg.sortMapKeys {
return &sortKeysMapEncoder{typ, elemType, encoder, *((*emptyInterface)(unsafe.Pointer(&mapInterface)))}, nil
}
return &mapEncoder{typ, elemType, encoder, *((*emptyInterface)(unsafe.Pointer(&mapInterface)))}, nil
}

View File

@ -1,99 +0,0 @@
package jsoniter
import (
"fmt"
"io"
"reflect"
"unsafe"
)
func decoderOfArray(cfg *frozenConfig, typ reflect.Type) (ValDecoder, error) {
decoder, err := decoderOfType(cfg, typ.Elem())
if err != nil {
return nil, err
}
return &arrayDecoder{typ, typ.Elem(), decoder}, nil
}
func encoderOfArray(cfg *frozenConfig, typ reflect.Type) (ValEncoder, error) {
encoder, err := encoderOfType(cfg, typ.Elem())
if err != nil {
return nil, err
}
if typ.Elem().Kind() == reflect.Map {
encoder = &OptionalEncoder{encoder}
}
return &arrayEncoder{typ, typ.Elem(), encoder}, nil
}
type arrayEncoder struct {
arrayType reflect.Type
elemType reflect.Type
elemEncoder ValEncoder
}
func (encoder *arrayEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteArrayStart()
elemPtr := unsafe.Pointer(ptr)
encoder.elemEncoder.Encode(elemPtr, stream)
for i := 1; i < encoder.arrayType.Len(); i++ {
stream.WriteMore()
elemPtr = unsafe.Pointer(uintptr(elemPtr) + encoder.elemType.Size())
encoder.elemEncoder.Encode(unsafe.Pointer(elemPtr), stream)
}
stream.WriteArrayEnd()
if stream.Error != nil && stream.Error != io.EOF {
stream.Error = fmt.Errorf("%v: %s", encoder.arrayType, stream.Error.Error())
}
}
func (encoder *arrayEncoder) EncodeInterface(val interface{}, stream *Stream) {
// special optimization for interface{}
e := (*emptyInterface)(unsafe.Pointer(&val))
if e.word == nil {
stream.WriteArrayStart()
stream.WriteNil()
stream.WriteArrayEnd()
return
}
elemType := encoder.arrayType.Elem()
if encoder.arrayType.Len() == 1 && (elemType.Kind() == reflect.Ptr || elemType.Kind() == reflect.Map) {
ptr := uintptr(e.word)
e.word = unsafe.Pointer(&ptr)
}
if reflect.TypeOf(val).Kind() == reflect.Ptr {
encoder.Encode(unsafe.Pointer(&e.word), stream)
} else {
encoder.Encode(e.word, stream)
}
}
func (encoder *arrayEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return false
}
type arrayDecoder struct {
arrayType reflect.Type
elemType reflect.Type
elemDecoder ValDecoder
}
func (decoder *arrayDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
decoder.doDecode(ptr, iter)
if iter.Error != nil && iter.Error != io.EOF {
iter.Error = fmt.Errorf("%v: %s", decoder.arrayType, iter.Error.Error())
}
}
func (decoder *arrayDecoder) doDecode(ptr unsafe.Pointer, iter *Iterator) {
offset := uintptr(0)
iter.ReadArrayCB(func(iter *Iterator) bool {
if offset < decoder.arrayType.Size() {
decoder.elemDecoder.Decode(unsafe.Pointer(uintptr(ptr)+offset), iter)
offset += decoder.elemType.Size()
} else {
iter.Skip()
}
return true
})
}

View File

@ -1,244 +0,0 @@
package jsoniter
import (
"encoding"
"encoding/json"
"reflect"
"sort"
"strconv"
"unsafe"
)
type mapDecoder struct {
mapType reflect.Type
keyType reflect.Type
elemType reflect.Type
elemDecoder ValDecoder
mapInterface emptyInterface
}
func (decoder *mapDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
// dark magic to cast unsafe.Pointer back to interface{} using reflect.Type
mapInterface := decoder.mapInterface
mapInterface.word = ptr
realInterface := (*interface{})(unsafe.Pointer(&mapInterface))
realVal := reflect.ValueOf(*realInterface).Elem()
if iter.ReadNil() {
realVal.Set(reflect.Zero(decoder.mapType))
return
}
if realVal.IsNil() {
realVal.Set(reflect.MakeMap(realVal.Type()))
}
iter.ReadMapCB(func(iter *Iterator, keyStr string) bool {
elem := reflect.New(decoder.elemType)
decoder.elemDecoder.Decode(unsafe.Pointer(elem.Pointer()), iter)
// to put into map, we have to use reflection
keyType := decoder.keyType
// TODO: remove this from loop
switch {
case keyType.Kind() == reflect.String:
realVal.SetMapIndex(reflect.ValueOf(keyStr).Convert(keyType), elem.Elem())
return true
case keyType.Implements(textUnmarshalerType):
textUnmarshaler := reflect.New(keyType.Elem()).Interface().(encoding.TextUnmarshaler)
err := textUnmarshaler.UnmarshalText([]byte(keyStr))
if err != nil {
iter.ReportError("read map key as TextUnmarshaler", err.Error())
return false
}
realVal.SetMapIndex(reflect.ValueOf(textUnmarshaler), elem.Elem())
return true
case reflect.PtrTo(keyType).Implements(textUnmarshalerType):
textUnmarshaler := reflect.New(keyType).Interface().(encoding.TextUnmarshaler)
err := textUnmarshaler.UnmarshalText([]byte(keyStr))
if err != nil {
iter.ReportError("read map key as TextUnmarshaler", err.Error())
return false
}
realVal.SetMapIndex(reflect.ValueOf(textUnmarshaler).Elem(), elem.Elem())
return true
default:
switch keyType.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
n, err := strconv.ParseInt(keyStr, 10, 64)
if err != nil || reflect.Zero(keyType).OverflowInt(n) {
iter.ReportError("read map key as int64", "read int64 failed")
return false
}
realVal.SetMapIndex(reflect.ValueOf(n).Convert(keyType), elem.Elem())
return true
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
n, err := strconv.ParseUint(keyStr, 10, 64)
if err != nil || reflect.Zero(keyType).OverflowUint(n) {
iter.ReportError("read map key as uint64", "read uint64 failed")
return false
}
realVal.SetMapIndex(reflect.ValueOf(n).Convert(keyType), elem.Elem())
return true
}
}
iter.ReportError("read map key", "unexpected map key type "+keyType.String())
return true
})
}
type mapEncoder struct {
mapType reflect.Type
elemType reflect.Type
elemEncoder ValEncoder
mapInterface emptyInterface
}
func (encoder *mapEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
mapInterface := encoder.mapInterface
mapInterface.word = ptr
realInterface := (*interface{})(unsafe.Pointer(&mapInterface))
realVal := reflect.ValueOf(*realInterface)
stream.WriteObjectStart()
for i, key := range realVal.MapKeys() {
if i != 0 {
stream.WriteMore()
}
encodeMapKey(key, stream)
if stream.indention > 0 {
stream.writeTwoBytes(byte(':'), byte(' '))
} else {
stream.writeByte(':')
}
val := realVal.MapIndex(key).Interface()
encoder.elemEncoder.EncodeInterface(val, stream)
}
stream.WriteObjectEnd()
}
func encodeMapKey(key reflect.Value, stream *Stream) {
if key.Kind() == reflect.String {
stream.WriteString(key.String())
return
}
if tm, ok := key.Interface().(encoding.TextMarshaler); ok {
buf, err := tm.MarshalText()
if err != nil {
stream.Error = err
return
}
stream.writeByte('"')
stream.Write(buf)
stream.writeByte('"')
return
}
switch key.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
stream.writeByte('"')
stream.WriteInt64(key.Int())
stream.writeByte('"')
return
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
stream.writeByte('"')
stream.WriteUint64(key.Uint())
stream.writeByte('"')
return
}
stream.Error = &json.UnsupportedTypeError{Type: key.Type()}
}
func (encoder *mapEncoder) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, encoder)
}
func (encoder *mapEncoder) IsEmpty(ptr unsafe.Pointer) bool {
mapInterface := encoder.mapInterface
mapInterface.word = ptr
realInterface := (*interface{})(unsafe.Pointer(&mapInterface))
realVal := reflect.ValueOf(*realInterface)
return realVal.Len() == 0
}
type sortKeysMapEncoder struct {
mapType reflect.Type
elemType reflect.Type
elemEncoder ValEncoder
mapInterface emptyInterface
}
func (encoder *sortKeysMapEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
mapInterface := encoder.mapInterface
mapInterface.word = ptr
realInterface := (*interface{})(unsafe.Pointer(&mapInterface))
realVal := reflect.ValueOf(*realInterface)
// Extract and sort the keys.
keys := realVal.MapKeys()
sv := stringValues(make([]reflectWithString, len(keys)))
for i, v := range keys {
sv[i].v = v
if err := sv[i].resolve(); err != nil {
stream.Error = err
return
}
}
sort.Sort(sv)
stream.WriteObjectStart()
for i, key := range sv {
if i != 0 {
stream.WriteMore()
}
stream.WriteVal(key.s) // might need html escape, so can not WriteString directly
if stream.indention > 0 {
stream.writeTwoBytes(byte(':'), byte(' '))
} else {
stream.writeByte(':')
}
val := realVal.MapIndex(key.v).Interface()
encoder.elemEncoder.EncodeInterface(val, stream)
}
stream.WriteObjectEnd()
}
// stringValues is a slice of reflect.Value holding *reflect.StringValue.
// It implements the methods to sort by string.
type stringValues []reflectWithString
type reflectWithString struct {
v reflect.Value
s string
}
func (w *reflectWithString) resolve() error {
if w.v.Kind() == reflect.String {
w.s = w.v.String()
return nil
}
if tm, ok := w.v.Interface().(encoding.TextMarshaler); ok {
buf, err := tm.MarshalText()
w.s = string(buf)
return err
}
switch w.v.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
w.s = strconv.FormatInt(w.v.Int(), 10)
return nil
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
w.s = strconv.FormatUint(w.v.Uint(), 10)
return nil
}
return &json.UnsupportedTypeError{Type: w.v.Type()}
}
func (sv stringValues) Len() int { return len(sv) }
func (sv stringValues) Swap(i, j int) { sv[i], sv[j] = sv[j], sv[i] }
func (sv stringValues) Less(i, j int) bool { return sv[i].s < sv[j].s }
func (encoder *sortKeysMapEncoder) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, encoder)
}
func (encoder *sortKeysMapEncoder) IsEmpty(ptr unsafe.Pointer) bool {
mapInterface := encoder.mapInterface
mapInterface.word = ptr
realInterface := (*interface{})(unsafe.Pointer(&mapInterface))
realVal := reflect.ValueOf(*realInterface)
return realVal.Len() == 0
}

View File

@ -1,764 +0,0 @@
package jsoniter
import (
"encoding"
"encoding/base64"
"encoding/json"
"reflect"
"unsafe"
)
type stringCodec struct {
}
func (codec *stringCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
*((*string)(ptr)) = iter.ReadString()
}
func (codec *stringCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
str := *((*string)(ptr))
stream.WriteString(str)
}
func (codec *stringCodec) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, codec)
}
func (codec *stringCodec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*string)(ptr)) == ""
}
type intCodec struct {
}
func (codec *intCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*int)(ptr)) = iter.ReadInt()
}
}
func (codec *intCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteInt(*((*int)(ptr)))
}
func (codec *intCodec) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, codec)
}
func (codec *intCodec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*int)(ptr)) == 0
}
type uintptrCodec struct {
}
func (codec *uintptrCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*uintptr)(ptr)) = uintptr(iter.ReadUint64())
}
}
func (codec *uintptrCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteUint64(uint64(*((*uintptr)(ptr))))
}
func (codec *uintptrCodec) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, codec)
}
func (codec *uintptrCodec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*uintptr)(ptr)) == 0
}
type int8Codec struct {
}
func (codec *int8Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*int8)(ptr)) = iter.ReadInt8()
}
}
func (codec *int8Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteInt8(*((*int8)(ptr)))
}
func (codec *int8Codec) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, codec)
}
func (codec *int8Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*int8)(ptr)) == 0
}
type int16Codec struct {
}
func (codec *int16Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*int16)(ptr)) = iter.ReadInt16()
}
}
func (codec *int16Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteInt16(*((*int16)(ptr)))
}
func (codec *int16Codec) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, codec)
}
func (codec *int16Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*int16)(ptr)) == 0
}
type int32Codec struct {
}
func (codec *int32Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*int32)(ptr)) = iter.ReadInt32()
}
}
func (codec *int32Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteInt32(*((*int32)(ptr)))
}
func (codec *int32Codec) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, codec)
}
func (codec *int32Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*int32)(ptr)) == 0
}
type int64Codec struct {
}
func (codec *int64Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*int64)(ptr)) = iter.ReadInt64()
}
}
func (codec *int64Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteInt64(*((*int64)(ptr)))
}
func (codec *int64Codec) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, codec)
}
func (codec *int64Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*int64)(ptr)) == 0
}
type uintCodec struct {
}
func (codec *uintCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*uint)(ptr)) = iter.ReadUint()
return
}
}
func (codec *uintCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteUint(*((*uint)(ptr)))
}
func (codec *uintCodec) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, codec)
}
func (codec *uintCodec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*uint)(ptr)) == 0
}
type uint8Codec struct {
}
func (codec *uint8Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*uint8)(ptr)) = iter.ReadUint8()
}
}
func (codec *uint8Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteUint8(*((*uint8)(ptr)))
}
func (codec *uint8Codec) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, codec)
}
func (codec *uint8Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*uint8)(ptr)) == 0
}
type uint16Codec struct {
}
func (codec *uint16Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*uint16)(ptr)) = iter.ReadUint16()
}
}
func (codec *uint16Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteUint16(*((*uint16)(ptr)))
}
func (codec *uint16Codec) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, codec)
}
func (codec *uint16Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*uint16)(ptr)) == 0
}
type uint32Codec struct {
}
func (codec *uint32Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*uint32)(ptr)) = iter.ReadUint32()
}
}
func (codec *uint32Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteUint32(*((*uint32)(ptr)))
}
func (codec *uint32Codec) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, codec)
}
func (codec *uint32Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*uint32)(ptr)) == 0
}
type uint64Codec struct {
}
func (codec *uint64Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*uint64)(ptr)) = iter.ReadUint64()
}
}
func (codec *uint64Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteUint64(*((*uint64)(ptr)))
}
func (codec *uint64Codec) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, codec)
}
func (codec *uint64Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*uint64)(ptr)) == 0
}
type float32Codec struct {
}
func (codec *float32Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*float32)(ptr)) = iter.ReadFloat32()
}
}
func (codec *float32Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteFloat32(*((*float32)(ptr)))
}
func (codec *float32Codec) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, codec)
}
func (codec *float32Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*float32)(ptr)) == 0
}
type float64Codec struct {
}
func (codec *float64Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*float64)(ptr)) = iter.ReadFloat64()
}
}
func (codec *float64Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteFloat64(*((*float64)(ptr)))
}
func (codec *float64Codec) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, codec)
}
func (codec *float64Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*float64)(ptr)) == 0
}
type boolCodec struct {
}
func (codec *boolCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*bool)(ptr)) = iter.ReadBool()
}
}
func (codec *boolCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteBool(*((*bool)(ptr)))
}
func (codec *boolCodec) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, codec)
}
func (codec *boolCodec) IsEmpty(ptr unsafe.Pointer) bool {
return !(*((*bool)(ptr)))
}
type emptyInterfaceCodec struct {
}
func (codec *emptyInterfaceCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
existing := *((*interface{})(ptr))
// Checking for both typed and untyped nil pointers.
if existing != nil &&
reflect.TypeOf(existing).Kind() == reflect.Ptr &&
!reflect.ValueOf(existing).IsNil() {
var ptrToExisting interface{}
for {
elem := reflect.ValueOf(existing).Elem()
if elem.Kind() != reflect.Ptr || elem.IsNil() {
break
}
ptrToExisting = existing
existing = elem.Interface()
}
if iter.ReadNil() {
if ptrToExisting != nil {
nilPtr := reflect.Zero(reflect.TypeOf(ptrToExisting).Elem())
reflect.ValueOf(ptrToExisting).Elem().Set(nilPtr)
} else {
*((*interface{})(ptr)) = nil
}
} else {
iter.ReadVal(existing)
}
return
}
if iter.ReadNil() {
*((*interface{})(ptr)) = nil
} else {
*((*interface{})(ptr)) = iter.Read()
}
}
func (codec *emptyInterfaceCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteVal(*((*interface{})(ptr)))
}
func (codec *emptyInterfaceCodec) EncodeInterface(val interface{}, stream *Stream) {
stream.WriteVal(val)
}
func (codec *emptyInterfaceCodec) IsEmpty(ptr unsafe.Pointer) bool {
emptyInterface := (*emptyInterface)(ptr)
return emptyInterface.typ == nil
}
type nonEmptyInterfaceCodec struct {
}
func (codec *nonEmptyInterfaceCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
nonEmptyInterface := (*nonEmptyInterface)(ptr)
if nonEmptyInterface.itab == nil {
iter.ReportError("read non-empty interface", "do not know which concrete type to decode to")
return
}
var i interface{}
e := (*emptyInterface)(unsafe.Pointer(&i))
e.typ = nonEmptyInterface.itab.typ
e.word = nonEmptyInterface.word
iter.ReadVal(&i)
if e.word == nil {
nonEmptyInterface.itab = nil
}
nonEmptyInterface.word = e.word
}
func (codec *nonEmptyInterfaceCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
nonEmptyInterface := (*nonEmptyInterface)(ptr)
var i interface{}
if nonEmptyInterface.itab != nil {
e := (*emptyInterface)(unsafe.Pointer(&i))
e.typ = nonEmptyInterface.itab.typ
e.word = nonEmptyInterface.word
}
stream.WriteVal(i)
}
func (codec *nonEmptyInterfaceCodec) EncodeInterface(val interface{}, stream *Stream) {
stream.WriteVal(val)
}
func (codec *nonEmptyInterfaceCodec) IsEmpty(ptr unsafe.Pointer) bool {
nonEmptyInterface := (*nonEmptyInterface)(ptr)
return nonEmptyInterface.word == nil
}
type anyCodec struct {
}
func (codec *anyCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
*((*Any)(ptr)) = iter.ReadAny()
}
func (codec *anyCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
(*((*Any)(ptr))).WriteTo(stream)
}
func (codec *anyCodec) EncodeInterface(val interface{}, stream *Stream) {
(val.(Any)).WriteTo(stream)
}
func (codec *anyCodec) IsEmpty(ptr unsafe.Pointer) bool {
return (*((*Any)(ptr))).Size() == 0
}
type jsonNumberCodec struct {
}
func (codec *jsonNumberCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
switch iter.WhatIsNext() {
case StringValue:
*((*json.Number)(ptr)) = json.Number(iter.ReadString())
case NilValue:
iter.skipFourBytes('n', 'u', 'l', 'l')
*((*json.Number)(ptr)) = ""
default:
*((*json.Number)(ptr)) = json.Number([]byte(iter.readNumberAsString()))
}
}
func (codec *jsonNumberCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteRaw(string(*((*json.Number)(ptr))))
}
func (codec *jsonNumberCodec) EncodeInterface(val interface{}, stream *Stream) {
stream.WriteRaw(string(val.(json.Number)))
}
func (codec *jsonNumberCodec) IsEmpty(ptr unsafe.Pointer) bool {
return len(*((*json.Number)(ptr))) == 0
}
type jsoniterNumberCodec struct {
}
func (codec *jsoniterNumberCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
switch iter.WhatIsNext() {
case StringValue:
*((*Number)(ptr)) = Number(iter.ReadString())
case NilValue:
iter.skipFourBytes('n', 'u', 'l', 'l')
*((*Number)(ptr)) = ""
default:
*((*Number)(ptr)) = Number([]byte(iter.readNumberAsString()))
}
}
func (codec *jsoniterNumberCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteRaw(string(*((*Number)(ptr))))
}
func (codec *jsoniterNumberCodec) EncodeInterface(val interface{}, stream *Stream) {
stream.WriteRaw(string(val.(Number)))
}
func (codec *jsoniterNumberCodec) IsEmpty(ptr unsafe.Pointer) bool {
return len(*((*Number)(ptr))) == 0
}
type jsonRawMessageCodec struct {
}
func (codec *jsonRawMessageCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
*((*json.RawMessage)(ptr)) = json.RawMessage(iter.SkipAndReturnBytes())
}
func (codec *jsonRawMessageCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteRaw(string(*((*json.RawMessage)(ptr))))
}
func (codec *jsonRawMessageCodec) EncodeInterface(val interface{}, stream *Stream) {
stream.WriteRaw(string(val.(json.RawMessage)))
}
func (codec *jsonRawMessageCodec) IsEmpty(ptr unsafe.Pointer) bool {
return len(*((*json.RawMessage)(ptr))) == 0
}
type jsoniterRawMessageCodec struct {
}
func (codec *jsoniterRawMessageCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
*((*RawMessage)(ptr)) = RawMessage(iter.SkipAndReturnBytes())
}
func (codec *jsoniterRawMessageCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteRaw(string(*((*RawMessage)(ptr))))
}
func (codec *jsoniterRawMessageCodec) EncodeInterface(val interface{}, stream *Stream) {
stream.WriteRaw(string(val.(RawMessage)))
}
func (codec *jsoniterRawMessageCodec) IsEmpty(ptr unsafe.Pointer) bool {
return len(*((*RawMessage)(ptr))) == 0
}
type base64Codec struct {
sliceDecoder ValDecoder
}
func (codec *base64Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if iter.ReadNil() {
ptrSlice := (*sliceHeader)(ptr)
ptrSlice.Len = 0
ptrSlice.Cap = 0
ptrSlice.Data = nil
return
}
switch iter.WhatIsNext() {
case StringValue:
encoding := base64.StdEncoding
src := iter.SkipAndReturnBytes()
src = src[1 : len(src)-1]
decodedLen := encoding.DecodedLen(len(src))
dst := make([]byte, decodedLen)
len, err := encoding.Decode(dst, src)
if err != nil {
iter.ReportError("decode base64", err.Error())
} else {
dst = dst[:len]
dstSlice := (*sliceHeader)(unsafe.Pointer(&dst))
ptrSlice := (*sliceHeader)(ptr)
ptrSlice.Data = dstSlice.Data
ptrSlice.Cap = dstSlice.Cap
ptrSlice.Len = dstSlice.Len
}
case ArrayValue:
codec.sliceDecoder.Decode(ptr, iter)
default:
iter.ReportError("base64Codec", "invalid input")
}
}
func (codec *base64Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
src := *((*[]byte)(ptr))
if len(src) == 0 {
stream.WriteNil()
return
}
encoding := base64.StdEncoding
stream.writeByte('"')
toGrow := encoding.EncodedLen(len(src))
stream.ensure(toGrow)
encoding.Encode(stream.buf[stream.n:], src)
stream.n += toGrow
stream.writeByte('"')
}
func (codec *base64Codec) EncodeInterface(val interface{}, stream *Stream) {
ptr := extractInterface(val).word
src := *((*[]byte)(ptr))
if len(src) == 0 {
stream.WriteNil()
return
}
encoding := base64.StdEncoding
stream.writeByte('"')
toGrow := encoding.EncodedLen(len(src))
stream.ensure(toGrow)
encoding.Encode(stream.buf[stream.n:], src)
stream.n += toGrow
stream.writeByte('"')
}
func (codec *base64Codec) IsEmpty(ptr unsafe.Pointer) bool {
return len(*((*[]byte)(ptr))) == 0
}
type stringModeNumberDecoder struct {
elemDecoder ValDecoder
}
func (decoder *stringModeNumberDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
c := iter.nextToken()
if c != '"' {
iter.ReportError("stringModeNumberDecoder", `expect ", but found `+string([]byte{c}))
return
}
decoder.elemDecoder.Decode(ptr, iter)
if iter.Error != nil {
return
}
c = iter.readByte()
if c != '"' {
iter.ReportError("stringModeNumberDecoder", `expect ", but found `+string([]byte{c}))
return
}
}
type stringModeStringDecoder struct {
elemDecoder ValDecoder
cfg *frozenConfig
}
func (decoder *stringModeStringDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
decoder.elemDecoder.Decode(ptr, iter)
str := *((*string)(ptr))
tempIter := decoder.cfg.BorrowIterator([]byte(str))
defer decoder.cfg.ReturnIterator(tempIter)
*((*string)(ptr)) = tempIter.ReadString()
}
type stringModeNumberEncoder struct {
elemEncoder ValEncoder
}
func (encoder *stringModeNumberEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.writeByte('"')
encoder.elemEncoder.Encode(ptr, stream)
stream.writeByte('"')
}
func (encoder *stringModeNumberEncoder) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, encoder)
}
func (encoder *stringModeNumberEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return encoder.elemEncoder.IsEmpty(ptr)
}
type stringModeStringEncoder struct {
elemEncoder ValEncoder
cfg *frozenConfig
}
func (encoder *stringModeStringEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
tempStream := encoder.cfg.BorrowStream(nil)
defer encoder.cfg.ReturnStream(tempStream)
encoder.elemEncoder.Encode(ptr, tempStream)
stream.WriteString(string(tempStream.Buffer()))
}
func (encoder *stringModeStringEncoder) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, encoder)
}
func (encoder *stringModeStringEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return encoder.elemEncoder.IsEmpty(ptr)
}
type marshalerEncoder struct {
templateInterface emptyInterface
checkIsEmpty checkIsEmpty
}
func (encoder *marshalerEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
templateInterface := encoder.templateInterface
templateInterface.word = ptr
realInterface := (*interface{})(unsafe.Pointer(&templateInterface))
marshaler, ok := (*realInterface).(json.Marshaler)
if !ok {
stream.WriteVal(nil)
return
}
bytes, err := marshaler.MarshalJSON()
if err != nil {
stream.Error = err
} else {
stream.Write(bytes)
}
}
func (encoder *marshalerEncoder) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, encoder)
}
func (encoder *marshalerEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return encoder.checkIsEmpty.IsEmpty(ptr)
}
type textMarshalerEncoder struct {
templateInterface emptyInterface
checkIsEmpty checkIsEmpty
}
func (encoder *textMarshalerEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
templateInterface := encoder.templateInterface
templateInterface.word = ptr
realInterface := (*interface{})(unsafe.Pointer(&templateInterface))
marshaler := (*realInterface).(encoding.TextMarshaler)
bytes, err := marshaler.MarshalText()
if err != nil {
stream.Error = err
} else {
stream.WriteString(string(bytes))
}
}
func (encoder *textMarshalerEncoder) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, encoder)
}
func (encoder *textMarshalerEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return encoder.checkIsEmpty.IsEmpty(ptr)
}
type unmarshalerDecoder struct {
templateInterface emptyInterface
}
func (decoder *unmarshalerDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
templateInterface := decoder.templateInterface
templateInterface.word = ptr
realInterface := (*interface{})(unsafe.Pointer(&templateInterface))
unmarshaler := (*realInterface).(json.Unmarshaler)
iter.nextToken()
iter.unreadByte() // skip spaces
bytes := iter.SkipAndReturnBytes()
err := unmarshaler.UnmarshalJSON(bytes)
if err != nil {
iter.ReportError("unmarshalerDecoder", err.Error())
}
}
type textUnmarshalerDecoder struct {
templateInterface emptyInterface
}
func (decoder *textUnmarshalerDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
templateInterface := decoder.templateInterface
templateInterface.word = ptr
realInterface := (*interface{})(unsafe.Pointer(&templateInterface))
unmarshaler := (*realInterface).(encoding.TextUnmarshaler)
str := iter.ReadString()
err := unmarshaler.UnmarshalText([]byte(str))
if err != nil {
iter.ReportError("textUnmarshalerDecoder", err.Error())
}
}

View File

@ -1,147 +0,0 @@
package jsoniter
import (
"fmt"
"io"
"reflect"
"unsafe"
)
func decoderOfSlice(cfg *frozenConfig, typ reflect.Type) (ValDecoder, error) {
decoder, err := decoderOfType(cfg, typ.Elem())
if err != nil {
return nil, err
}
return &sliceDecoder{typ, typ.Elem(), decoder}, nil
}
func encoderOfSlice(cfg *frozenConfig, typ reflect.Type) (ValEncoder, error) {
encoder, err := encoderOfType(cfg, typ.Elem())
if err != nil {
return nil, err
}
if typ.Elem().Kind() == reflect.Map {
encoder = &OptionalEncoder{encoder}
}
return &sliceEncoder{typ, typ.Elem(), encoder}, nil
}
type sliceEncoder struct {
sliceType reflect.Type
elemType reflect.Type
elemEncoder ValEncoder
}
func (encoder *sliceEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
slice := (*sliceHeader)(ptr)
if slice.Data == nil {
stream.WriteNil()
return
}
if slice.Len == 0 {
stream.WriteEmptyArray()
return
}
stream.WriteArrayStart()
elemPtr := unsafe.Pointer(slice.Data)
encoder.elemEncoder.Encode(unsafe.Pointer(elemPtr), stream)
for i := 1; i < slice.Len; i++ {
stream.WriteMore()
elemPtr = unsafe.Pointer(uintptr(elemPtr) + encoder.elemType.Size())
encoder.elemEncoder.Encode(unsafe.Pointer(elemPtr), stream)
}
stream.WriteArrayEnd()
if stream.Error != nil && stream.Error != io.EOF {
stream.Error = fmt.Errorf("%v: %s", encoder.sliceType, stream.Error.Error())
}
}
func (encoder *sliceEncoder) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, encoder)
}
func (encoder *sliceEncoder) IsEmpty(ptr unsafe.Pointer) bool {
slice := (*sliceHeader)(ptr)
return slice.Len == 0
}
type sliceDecoder struct {
sliceType reflect.Type
elemType reflect.Type
elemDecoder ValDecoder
}
// sliceHeader is a safe version of SliceHeader used within this package.
type sliceHeader struct {
Data unsafe.Pointer
Len int
Cap int
}
func (decoder *sliceDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
decoder.doDecode(ptr, iter)
if iter.Error != nil && iter.Error != io.EOF {
iter.Error = fmt.Errorf("%v: %s", decoder.sliceType, iter.Error.Error())
}
}
func (decoder *sliceDecoder) doDecode(ptr unsafe.Pointer, iter *Iterator) {
slice := (*sliceHeader)(ptr)
if iter.ReadNil() {
slice.Len = 0
slice.Cap = 0
slice.Data = nil
return
}
reuseSlice(slice, decoder.sliceType, 4)
slice.Len = 0
offset := uintptr(0)
iter.ReadArrayCB(func(iter *Iterator) bool {
growOne(slice, decoder.sliceType, decoder.elemType)
decoder.elemDecoder.Decode(unsafe.Pointer(uintptr(slice.Data)+offset), iter)
offset += decoder.elemType.Size()
return true
})
}
// grow grows the slice s so that it can hold extra more values, allocating
// more capacity if needed. It also returns the old and new slice lengths.
func growOne(slice *sliceHeader, sliceType reflect.Type, elementType reflect.Type) {
newLen := slice.Len + 1
if newLen <= slice.Cap {
slice.Len = newLen
return
}
newCap := slice.Cap
if newCap == 0 {
newCap = 1
} else {
for newCap < newLen {
if slice.Len < 1024 {
newCap += newCap
} else {
newCap += newCap / 4
}
}
}
newVal := reflect.MakeSlice(sliceType, newLen, newCap)
dst := unsafe.Pointer(newVal.Pointer())
// copy old array into new array
originalBytesCount := slice.Len * int(elementType.Size())
srcSliceHeader := (unsafe.Pointer)(&sliceHeader{slice.Data, originalBytesCount, originalBytesCount})
dstSliceHeader := (unsafe.Pointer)(&sliceHeader{dst, originalBytesCount, originalBytesCount})
copy(*(*[]byte)(dstSliceHeader), *(*[]byte)(srcSliceHeader))
slice.Data = dst
slice.Len = newLen
slice.Cap = newCap
}
func reuseSlice(slice *sliceHeader, sliceType reflect.Type, expectedCap int) {
if expectedCap <= slice.Cap {
return
}
newVal := reflect.MakeSlice(sliceType, 0, expectedCap)
dst := unsafe.Pointer(newVal.Pointer())
slice.Data = dst
slice.Cap = expectedCap
}

View File

@ -1,320 +0,0 @@
package jsoniter
var digits []uint32
func init() {
digits = make([]uint32, 1000)
for i := uint32(0); i < 1000; i++ {
digits[i] = (((i / 100) + '0') << 16) + ((((i / 10) % 10) + '0') << 8) + i%10 + '0'
if i < 10 {
digits[i] += 2 << 24
} else if i < 100 {
digits[i] += 1 << 24
}
}
}
func writeFirstBuf(buf []byte, v uint32, n int) int {
start := v >> 24
if start == 0 {
buf[n] = byte(v >> 16)
n++
buf[n] = byte(v >> 8)
n++
} else if start == 1 {
buf[n] = byte(v >> 8)
n++
}
buf[n] = byte(v)
n++
return n
}
func writeBuf(buf []byte, v uint32, n int) {
buf[n] = byte(v >> 16)
buf[n+1] = byte(v >> 8)
buf[n+2] = byte(v)
}
// WriteUint8 write uint8 to stream
func (stream *Stream) WriteUint8(val uint8) {
stream.ensure(3)
stream.n = writeFirstBuf(stream.buf, digits[val], stream.n)
}
// WriteInt8 write int8 to stream
func (stream *Stream) WriteInt8(nval int8) {
stream.ensure(4)
n := stream.n
var val uint8
if nval < 0 {
val = uint8(-nval)
stream.buf[n] = '-'
n++
} else {
val = uint8(nval)
}
stream.n = writeFirstBuf(stream.buf, digits[val], n)
}
// WriteUint16 write uint16 to stream
func (stream *Stream) WriteUint16(val uint16) {
stream.ensure(5)
q1 := val / 1000
if q1 == 0 {
stream.n = writeFirstBuf(stream.buf, digits[val], stream.n)
return
}
r1 := val - q1*1000
n := writeFirstBuf(stream.buf, digits[q1], stream.n)
writeBuf(stream.buf, digits[r1], n)
stream.n = n + 3
return
}
// WriteInt16 write int16 to stream
func (stream *Stream) WriteInt16(nval int16) {
stream.ensure(6)
n := stream.n
var val uint16
if nval < 0 {
val = uint16(-nval)
stream.buf[n] = '-'
n++
} else {
val = uint16(nval)
}
q1 := val / 1000
if q1 == 0 {
stream.n = writeFirstBuf(stream.buf, digits[val], n)
return
}
r1 := val - q1*1000
n = writeFirstBuf(stream.buf, digits[q1], n)
writeBuf(stream.buf, digits[r1], n)
stream.n = n + 3
return
}
// WriteUint32 write uint32 to stream
func (stream *Stream) WriteUint32(val uint32) {
stream.ensure(10)
n := stream.n
q1 := val / 1000
if q1 == 0 {
stream.n = writeFirstBuf(stream.buf, digits[val], n)
return
}
r1 := val - q1*1000
q2 := q1 / 1000
if q2 == 0 {
n := writeFirstBuf(stream.buf, digits[q1], n)
writeBuf(stream.buf, digits[r1], n)
stream.n = n + 3
return
}
r2 := q1 - q2*1000
q3 := q2 / 1000
if q3 == 0 {
n = writeFirstBuf(stream.buf, digits[q2], n)
} else {
r3 := q2 - q3*1000
stream.buf[n] = byte(q3 + '0')
n++
writeBuf(stream.buf, digits[r3], n)
n += 3
}
writeBuf(stream.buf, digits[r2], n)
writeBuf(stream.buf, digits[r1], n+3)
stream.n = n + 6
}
// WriteInt32 write int32 to stream
func (stream *Stream) WriteInt32(nval int32) {
stream.ensure(11)
n := stream.n
var val uint32
if nval < 0 {
val = uint32(-nval)
stream.buf[n] = '-'
n++
} else {
val = uint32(nval)
}
q1 := val / 1000
if q1 == 0 {
stream.n = writeFirstBuf(stream.buf, digits[val], n)
return
}
r1 := val - q1*1000
q2 := q1 / 1000
if q2 == 0 {
n := writeFirstBuf(stream.buf, digits[q1], n)
writeBuf(stream.buf, digits[r1], n)
stream.n = n + 3
return
}
r2 := q1 - q2*1000
q3 := q2 / 1000
if q3 == 0 {
n = writeFirstBuf(stream.buf, digits[q2], n)
} else {
r3 := q2 - q3*1000
stream.buf[n] = byte(q3 + '0')
n++
writeBuf(stream.buf, digits[r3], n)
n += 3
}
writeBuf(stream.buf, digits[r2], n)
writeBuf(stream.buf, digits[r1], n+3)
stream.n = n + 6
}
// WriteUint64 write uint64 to stream
func (stream *Stream) WriteUint64(val uint64) {
stream.ensure(20)
n := stream.n
q1 := val / 1000
if q1 == 0 {
stream.n = writeFirstBuf(stream.buf, digits[val], n)
return
}
r1 := val - q1*1000
q2 := q1 / 1000
if q2 == 0 {
n := writeFirstBuf(stream.buf, digits[q1], n)
writeBuf(stream.buf, digits[r1], n)
stream.n = n + 3
return
}
r2 := q1 - q2*1000
q3 := q2 / 1000
if q3 == 0 {
n = writeFirstBuf(stream.buf, digits[q2], n)
writeBuf(stream.buf, digits[r2], n)
writeBuf(stream.buf, digits[r1], n+3)
stream.n = n + 6
return
}
r3 := q2 - q3*1000
q4 := q3 / 1000
if q4 == 0 {
n = writeFirstBuf(stream.buf, digits[q3], n)
writeBuf(stream.buf, digits[r3], n)
writeBuf(stream.buf, digits[r2], n+3)
writeBuf(stream.buf, digits[r1], n+6)
stream.n = n + 9
return
}
r4 := q3 - q4*1000
q5 := q4 / 1000
if q5 == 0 {
n = writeFirstBuf(stream.buf, digits[q4], n)
writeBuf(stream.buf, digits[r4], n)
writeBuf(stream.buf, digits[r3], n+3)
writeBuf(stream.buf, digits[r2], n+6)
writeBuf(stream.buf, digits[r1], n+9)
stream.n = n + 12
return
}
r5 := q4 - q5*1000
q6 := q5 / 1000
if q6 == 0 {
n = writeFirstBuf(stream.buf, digits[q5], n)
} else {
n = writeFirstBuf(stream.buf, digits[q6], n)
r6 := q5 - q6*1000
writeBuf(stream.buf, digits[r6], n)
n += 3
}
writeBuf(stream.buf, digits[r5], n)
writeBuf(stream.buf, digits[r4], n+3)
writeBuf(stream.buf, digits[r3], n+6)
writeBuf(stream.buf, digits[r2], n+9)
writeBuf(stream.buf, digits[r1], n+12)
stream.n = n + 15
}
// WriteInt64 write int64 to stream
func (stream *Stream) WriteInt64(nval int64) {
stream.ensure(20)
n := stream.n
var val uint64
if nval < 0 {
val = uint64(-nval)
stream.buf[n] = '-'
n++
} else {
val = uint64(nval)
}
q1 := val / 1000
if q1 == 0 {
stream.n = writeFirstBuf(stream.buf, digits[val], n)
return
}
r1 := val - q1*1000
q2 := q1 / 1000
if q2 == 0 {
n := writeFirstBuf(stream.buf, digits[q1], n)
writeBuf(stream.buf, digits[r1], n)
stream.n = n + 3
return
}
r2 := q1 - q2*1000
q3 := q2 / 1000
if q3 == 0 {
n = writeFirstBuf(stream.buf, digits[q2], n)
writeBuf(stream.buf, digits[r2], n)
writeBuf(stream.buf, digits[r1], n+3)
stream.n = n + 6
return
}
r3 := q2 - q3*1000
q4 := q3 / 1000
if q4 == 0 {
n = writeFirstBuf(stream.buf, digits[q3], n)
writeBuf(stream.buf, digits[r3], n)
writeBuf(stream.buf, digits[r2], n+3)
writeBuf(stream.buf, digits[r1], n+6)
stream.n = n + 9
return
}
r4 := q3 - q4*1000
q5 := q4 / 1000
if q5 == 0 {
n = writeFirstBuf(stream.buf, digits[q4], n)
writeBuf(stream.buf, digits[r4], n)
writeBuf(stream.buf, digits[r3], n+3)
writeBuf(stream.buf, digits[r2], n+6)
writeBuf(stream.buf, digits[r1], n+9)
stream.n = n + 12
return
}
r5 := q4 - q5*1000
q6 := q5 / 1000
if q6 == 0 {
n = writeFirstBuf(stream.buf, digits[q5], n)
} else {
stream.buf[n] = byte(q6 + '0')
n++
r6 := q5 - q6*1000
writeBuf(stream.buf, digits[r6], n)
n += 3
}
writeBuf(stream.buf, digits[r5], n)
writeBuf(stream.buf, digits[r4], n+3)
writeBuf(stream.buf, digits[r3], n+6)
writeBuf(stream.buf, digits[r2], n+9)
writeBuf(stream.buf, digits[r1], n+12)
stream.n = n + 15
}
// WriteInt write int to stream
func (stream *Stream) WriteInt(val int) {
stream.WriteInt64(int64(val))
}
// WriteUint write uint to stream
func (stream *Stream) WriteUint(val uint) {
stream.WriteUint64(uint64(val))
}

View File

@ -1,6 +1,7 @@
package jsoniter
import (
"encoding/json"
"io"
"math/big"
"strconv"
@ -339,3 +340,8 @@ func validateFloat(str string) string {
}
return ""
}
// ReadNumber read json.Number
func (iter *Iterator) ReadNumber() (ret json.Number) {
return json.Number(iter.readNumberAsString())
}

View File

@ -22,11 +22,17 @@ func init() {
// ReadUint read uint
func (iter *Iterator) ReadUint() uint {
if strconv.IntSize == 32 {
return uint(iter.ReadUint32())
}
return uint(iter.ReadUint64())
}
// ReadInt read int
func (iter *Iterator) ReadInt() int {
if strconv.IntSize == 32 {
return int(iter.ReadInt32())
}
return int(iter.ReadInt64())
}

View File

@ -3,7 +3,6 @@ package jsoniter
import (
"fmt"
"unicode"
"unsafe"
)
// ReadObject read one field from object.
@ -19,26 +18,6 @@ func (iter *Iterator) ReadObject() (ret string) {
c = iter.nextToken()
if c == '"' {
iter.unreadByte()
if iter.cfg.objectFieldMustBeSimpleString {
return string(iter.readObjectFieldAsBytes())
} else {
field := iter.ReadString()
c = iter.nextToken()
if c != ':' {
iter.ReportError("ReadObject", "expect : after object field, but found "+string([]byte{c}))
}
return field
}
}
if c == '}' {
return "" // end of object
}
iter.ReportError("ReadObject", `expect " after {, but found `+string([]byte{c}))
return
case ',':
if iter.cfg.objectFieldMustBeSimpleString {
return string(iter.readObjectFieldAsBytes())
} else {
field := iter.ReadString()
c = iter.nextToken()
if c != ':' {
@ -46,6 +25,18 @@ func (iter *Iterator) ReadObject() (ret string) {
}
return field
}
if c == '}' {
return "" // end of object
}
iter.ReportError("ReadObject", `expect " after {, but found `+string([]byte{c}))
return
case ',':
field := iter.ReadString()
c = iter.nextToken()
if c != ':' {
iter.ReportError("ReadObject", "expect : after object field, but found "+string([]byte{c}))
}
return field
case '}':
return "" // end of object
default:
@ -54,97 +45,91 @@ func (iter *Iterator) ReadObject() (ret string) {
}
}
func (iter *Iterator) readFieldHash() int32 {
// CaseInsensitive
func (iter *Iterator) readFieldHash() int64 {
hash := int64(0x811c9dc5)
c := iter.nextToken()
if c == '"' {
for {
for i := iter.head; i < iter.tail; i++ {
// require ascii string and no escape
b := iter.buf[i]
if !iter.cfg.objectFieldMustBeSimpleString && b == '\\' {
iter.head = i
for _, b := range iter.readStringSlowPath() {
if 'A' <= b && b <= 'Z' {
b += 'a' - 'A'
}
hash ^= int64(b)
hash *= 0x1000193
if c != '"' {
iter.ReportError("readFieldHash", `expect ", but found `+string([]byte{c}))
return 0
}
for {
for i := iter.head; i < iter.tail; i++ {
// require ascii string and no escape
b := iter.buf[i]
if b == '\\' {
iter.head = i
for _, b := range iter.readStringSlowPath() {
if 'A' <= b && b <= 'Z' && !iter.cfg.caseSensitive {
b += 'a' - 'A'
}
c = iter.nextToken()
if c != ':' {
iter.ReportError("readFieldHash", `expect :, but found `+string([]byte{c}))
return 0
}
return int32(hash)
hash ^= int64(b)
hash *= 0x1000193
}
if b == '"' {
iter.head = i + 1
c = iter.nextToken()
if c != ':' {
iter.ReportError("readFieldHash", `expect :, but found `+string([]byte{c}))
return 0
}
return int32(hash)
c = iter.nextToken()
if c != ':' {
iter.ReportError("readFieldHash", `expect :, but found `+string([]byte{c}))
return 0
}
if 'A' <= b && b <= 'Z' {
b += 'a' - 'A'
}
hash ^= int64(b)
hash *= 0x1000193
return hash
}
if !iter.loadMore() {
iter.ReportError("readFieldHash", `incomplete field name`)
return 0
if b == '"' {
iter.head = i + 1
c = iter.nextToken()
if c != ':' {
iter.ReportError("readFieldHash", `expect :, but found `+string([]byte{c}))
return 0
}
return hash
}
if 'A' <= b && b <= 'Z' && !iter.cfg.caseSensitive {
b += 'a' - 'A'
}
hash ^= int64(b)
hash *= 0x1000193
}
if !iter.loadMore() {
iter.ReportError("readFieldHash", `incomplete field name`)
return 0
}
}
iter.ReportError("readFieldHash", `expect ", but found `+string([]byte{c}))
return 0
}
func calcHash(str string) int32 {
func calcHash(str string, caseSensitive bool) int64 {
hash := int64(0x811c9dc5)
for _, b := range str {
hash ^= int64(unicode.ToLower(b))
if caseSensitive {
hash ^= int64(b)
} else {
hash ^= int64(unicode.ToLower(b))
}
hash *= 0x1000193
}
return int32(hash)
return int64(hash)
}
// ReadObjectCB read object with callback, the key is ascii only and field name not copied
func (iter *Iterator) ReadObjectCB(callback func(*Iterator, string) bool) bool {
c := iter.nextToken()
var fieldBytes []byte
var field string
if c == '{' {
c = iter.nextToken()
if c == '"' {
iter.unreadByte()
if iter.cfg.objectFieldMustBeSimpleString {
fieldBytes = iter.readObjectFieldAsBytes()
field = *(*string)(unsafe.Pointer(&fieldBytes))
} else {
field = iter.ReadString()
c = iter.nextToken()
if c != ':' {
iter.ReportError("ReadObject", "expect : after object field, but found "+string([]byte{c}))
}
field = iter.ReadString()
c = iter.nextToken()
if c != ':' {
iter.ReportError("ReadObject", "expect : after object field, but found "+string([]byte{c}))
}
if !callback(iter, field) {
return false
}
c = iter.nextToken()
for c == ',' {
if iter.cfg.objectFieldMustBeSimpleString {
fieldBytes = iter.readObjectFieldAsBytes()
field = *(*string)(unsafe.Pointer(&fieldBytes))
} else {
field = iter.ReadString()
c = iter.nextToken()
if c != ':' {
iter.ReportError("ReadObject", "expect : after object field, but found "+string([]byte{c}))
}
field = iter.ReadString()
c = iter.nextToken()
if c != ':' {
iter.ReportError("ReadObject", "expect : after object field, but found "+string([]byte{c}))
}
if !callback(iter, field) {
return false

View File

@ -17,43 +17,26 @@ type StreamPool interface {
}
func (cfg *frozenConfig) BorrowStream(writer io.Writer) *Stream {
select {
case stream := <-cfg.streamPool:
stream.Reset(writer)
return stream
default:
return NewStream(cfg, writer, 512)
}
stream := cfg.streamPool.Get().(*Stream)
stream.Reset(writer)
return stream
}
func (cfg *frozenConfig) ReturnStream(stream *Stream) {
stream.out = nil
stream.Error = nil
stream.Attachment = nil
select {
case cfg.streamPool <- stream:
return
default:
return
}
cfg.streamPool.Put(stream)
}
func (cfg *frozenConfig) BorrowIterator(data []byte) *Iterator {
select {
case iter := <-cfg.iteratorPool:
iter.ResetBytes(data)
return iter
default:
return ParseBytes(cfg, data)
}
iter := cfg.iteratorPool.Get().(*Iterator)
iter.ResetBytes(data)
return iter
}
func (cfg *frozenConfig) ReturnIterator(iter *Iterator) {
iter.Error = nil
iter.Attachment = nil
select {
case cfg.iteratorPool <- iter:
return
default:
return
}
cfg.iteratorPool.Put(iter)
}

330
vendor/github.com/json-iterator/go/reflect.go generated vendored Normal file
View File

@ -0,0 +1,330 @@
package jsoniter
import (
"fmt"
"reflect"
"unsafe"
"github.com/modern-go/reflect2"
)
// ValDecoder is an internal type registered to cache as needed.
// Don't confuse jsoniter.ValDecoder with json.Decoder.
// For json.Decoder's adapter, refer to jsoniter.AdapterDecoder(todo link).
//
// Reflection on type to create decoders, which is then cached
// Reflection on value is avoided as we can, as the reflect.Value itself will allocate, with following exceptions
// 1. create instance of new value, for example *int will need a int to be allocated
// 2. append to slice, if the existing cap is not enough, allocate will be done using Reflect.New
// 3. assignment to map, both key and value will be reflect.Value
// For a simple struct binding, it will be reflect.Value free and allocation free
type ValDecoder interface {
Decode(ptr unsafe.Pointer, iter *Iterator)
}
// ValEncoder is an internal type registered to cache as needed.
// Don't confuse jsoniter.ValEncoder with json.Encoder.
// For json.Encoder's adapter, refer to jsoniter.AdapterEncoder(todo godoc link).
type ValEncoder interface {
IsEmpty(ptr unsafe.Pointer) bool
Encode(ptr unsafe.Pointer, stream *Stream)
}
type checkIsEmpty interface {
IsEmpty(ptr unsafe.Pointer) bool
}
type ctx struct {
*frozenConfig
prefix string
encoders map[reflect2.Type]ValEncoder
decoders map[reflect2.Type]ValDecoder
}
func (b *ctx) caseSensitive() bool {
if b.frozenConfig == nil {
// default is case-insensitive
return false
}
return b.frozenConfig.caseSensitive
}
func (b *ctx) append(prefix string) *ctx {
return &ctx{
frozenConfig: b.frozenConfig,
prefix: b.prefix + " " + prefix,
encoders: b.encoders,
decoders: b.decoders,
}
}
// ReadVal copy the underlying JSON into go interface, same as json.Unmarshal
func (iter *Iterator) ReadVal(obj interface{}) {
cacheKey := reflect2.RTypeOf(obj)
decoder := iter.cfg.getDecoderFromCache(cacheKey)
if decoder == nil {
typ := reflect2.TypeOf(obj)
if typ.Kind() != reflect.Ptr {
iter.ReportError("ReadVal", "can only unmarshal into pointer")
return
}
decoder = iter.cfg.DecoderOf(typ)
}
ptr := reflect2.PtrOf(obj)
if ptr == nil {
iter.ReportError("ReadVal", "can not read into nil pointer")
return
}
decoder.Decode(ptr, iter)
}
// WriteVal copy the go interface into underlying JSON, same as json.Marshal
func (stream *Stream) WriteVal(val interface{}) {
if nil == val {
stream.WriteNil()
return
}
cacheKey := reflect2.RTypeOf(val)
encoder := stream.cfg.getEncoderFromCache(cacheKey)
if encoder == nil {
typ := reflect2.TypeOf(val)
encoder = stream.cfg.EncoderOf(typ)
}
encoder.Encode(reflect2.PtrOf(val), stream)
}
func (cfg *frozenConfig) DecoderOf(typ reflect2.Type) ValDecoder {
cacheKey := typ.RType()
decoder := cfg.getDecoderFromCache(cacheKey)
if decoder != nil {
return decoder
}
ctx := &ctx{
frozenConfig: cfg,
prefix: "",
decoders: map[reflect2.Type]ValDecoder{},
encoders: map[reflect2.Type]ValEncoder{},
}
ptrType := typ.(*reflect2.UnsafePtrType)
decoder = decoderOfType(ctx, ptrType.Elem())
cfg.addDecoderToCache(cacheKey, decoder)
return decoder
}
func decoderOfType(ctx *ctx, typ reflect2.Type) ValDecoder {
decoder := getTypeDecoderFromExtension(ctx, typ)
if decoder != nil {
return decoder
}
decoder = createDecoderOfType(ctx, typ)
for _, extension := range extensions {
decoder = extension.DecorateDecoder(typ, decoder)
}
for _, extension := range ctx.extensions {
decoder = extension.DecorateDecoder(typ, decoder)
}
return decoder
}
func createDecoderOfType(ctx *ctx, typ reflect2.Type) ValDecoder {
decoder := ctx.decoders[typ]
if decoder != nil {
return decoder
}
placeholder := &placeholderDecoder{}
ctx.decoders[typ] = placeholder
decoder = _createDecoderOfType(ctx, typ)
placeholder.decoder = decoder
return decoder
}
func _createDecoderOfType(ctx *ctx, typ reflect2.Type) ValDecoder {
decoder := createDecoderOfJsonRawMessage(ctx, typ)
if decoder != nil {
return decoder
}
decoder = createDecoderOfJsonNumber(ctx, typ)
if decoder != nil {
return decoder
}
decoder = createDecoderOfMarshaler(ctx, typ)
if decoder != nil {
return decoder
}
decoder = createDecoderOfAny(ctx, typ)
if decoder != nil {
return decoder
}
decoder = createDecoderOfNative(ctx, typ)
if decoder != nil {
return decoder
}
switch typ.Kind() {
case reflect.Interface:
ifaceType, isIFace := typ.(*reflect2.UnsafeIFaceType)
if isIFace {
return &ifaceDecoder{valType: ifaceType}
}
return &efaceDecoder{}
case reflect.Struct:
return decoderOfStruct(ctx, typ)
case reflect.Array:
return decoderOfArray(ctx, typ)
case reflect.Slice:
return decoderOfSlice(ctx, typ)
case reflect.Map:
return decoderOfMap(ctx, typ)
case reflect.Ptr:
return decoderOfOptional(ctx, typ)
default:
return &lazyErrorDecoder{err: fmt.Errorf("%s%s is unsupported type", ctx.prefix, typ.String())}
}
}
func (cfg *frozenConfig) EncoderOf(typ reflect2.Type) ValEncoder {
cacheKey := typ.RType()
encoder := cfg.getEncoderFromCache(cacheKey)
if encoder != nil {
return encoder
}
ctx := &ctx{
frozenConfig: cfg,
prefix: "",
decoders: map[reflect2.Type]ValDecoder{},
encoders: map[reflect2.Type]ValEncoder{},
}
encoder = encoderOfType(ctx, typ)
if typ.LikePtr() {
encoder = &onePtrEncoder{encoder}
}
cfg.addEncoderToCache(cacheKey, encoder)
return encoder
}
type onePtrEncoder struct {
encoder ValEncoder
}
func (encoder *onePtrEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return encoder.encoder.IsEmpty(unsafe.Pointer(&ptr))
}
func (encoder *onePtrEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
encoder.encoder.Encode(unsafe.Pointer(&ptr), stream)
}
func encoderOfType(ctx *ctx, typ reflect2.Type) ValEncoder {
encoder := getTypeEncoderFromExtension(ctx, typ)
if encoder != nil {
return encoder
}
encoder = createEncoderOfType(ctx, typ)
for _, extension := range extensions {
encoder = extension.DecorateEncoder(typ, encoder)
}
for _, extension := range ctx.extensions {
encoder = extension.DecorateEncoder(typ, encoder)
}
return encoder
}
func createEncoderOfType(ctx *ctx, typ reflect2.Type) ValEncoder {
encoder := ctx.encoders[typ]
if encoder != nil {
return encoder
}
placeholder := &placeholderEncoder{}
ctx.encoders[typ] = placeholder
encoder = _createEncoderOfType(ctx, typ)
placeholder.encoder = encoder
return encoder
}
func _createEncoderOfType(ctx *ctx, typ reflect2.Type) ValEncoder {
encoder := createEncoderOfJsonRawMessage(ctx, typ)
if encoder != nil {
return encoder
}
encoder = createEncoderOfJsonNumber(ctx, typ)
if encoder != nil {
return encoder
}
encoder = createEncoderOfMarshaler(ctx, typ)
if encoder != nil {
return encoder
}
encoder = createEncoderOfAny(ctx, typ)
if encoder != nil {
return encoder
}
encoder = createEncoderOfNative(ctx, typ)
if encoder != nil {
return encoder
}
kind := typ.Kind()
switch kind {
case reflect.Interface:
return &dynamicEncoder{typ}
case reflect.Struct:
return encoderOfStruct(ctx, typ)
case reflect.Array:
return encoderOfArray(ctx, typ)
case reflect.Slice:
return encoderOfSlice(ctx, typ)
case reflect.Map:
return encoderOfMap(ctx, typ)
case reflect.Ptr:
return encoderOfOptional(ctx, typ)
default:
return &lazyErrorEncoder{err: fmt.Errorf("%s%s is unsupported type", ctx.prefix, typ.String())}
}
}
type lazyErrorDecoder struct {
err error
}
func (decoder *lazyErrorDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
if iter.WhatIsNext() != NilValue {
if iter.Error == nil {
iter.Error = decoder.err
}
} else {
iter.Skip()
}
}
type lazyErrorEncoder struct {
err error
}
func (encoder *lazyErrorEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
if ptr == nil {
stream.WriteNil()
} else if stream.Error == nil {
stream.Error = encoder.err
}
}
func (encoder *lazyErrorEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return false
}
type placeholderDecoder struct {
decoder ValDecoder
}
func (decoder *placeholderDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
decoder.decoder.Decode(ptr, iter)
}
type placeholderEncoder struct {
encoder ValEncoder
}
func (encoder *placeholderEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
encoder.encoder.Encode(ptr, stream)
}
func (encoder *placeholderEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return encoder.encoder.IsEmpty(ptr)
}

104
vendor/github.com/json-iterator/go/reflect_array.go generated vendored Normal file
View File

@ -0,0 +1,104 @@
package jsoniter
import (
"fmt"
"github.com/modern-go/reflect2"
"io"
"unsafe"
)
func decoderOfArray(ctx *ctx, typ reflect2.Type) ValDecoder {
arrayType := typ.(*reflect2.UnsafeArrayType)
decoder := decoderOfType(ctx.append("[arrayElem]"), arrayType.Elem())
return &arrayDecoder{arrayType, decoder}
}
func encoderOfArray(ctx *ctx, typ reflect2.Type) ValEncoder {
arrayType := typ.(*reflect2.UnsafeArrayType)
if arrayType.Len() == 0 {
return emptyArrayEncoder{}
}
encoder := encoderOfType(ctx.append("[arrayElem]"), arrayType.Elem())
return &arrayEncoder{arrayType, encoder}
}
type emptyArrayEncoder struct{}
func (encoder emptyArrayEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteEmptyArray()
}
func (encoder emptyArrayEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return true
}
type arrayEncoder struct {
arrayType *reflect2.UnsafeArrayType
elemEncoder ValEncoder
}
func (encoder *arrayEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteArrayStart()
elemPtr := unsafe.Pointer(ptr)
encoder.elemEncoder.Encode(elemPtr, stream)
for i := 1; i < encoder.arrayType.Len(); i++ {
stream.WriteMore()
elemPtr = encoder.arrayType.UnsafeGetIndex(ptr, i)
encoder.elemEncoder.Encode(elemPtr, stream)
}
stream.WriteArrayEnd()
if stream.Error != nil && stream.Error != io.EOF {
stream.Error = fmt.Errorf("%v: %s", encoder.arrayType, stream.Error.Error())
}
}
func (encoder *arrayEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return false
}
type arrayDecoder struct {
arrayType *reflect2.UnsafeArrayType
elemDecoder ValDecoder
}
func (decoder *arrayDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
decoder.doDecode(ptr, iter)
if iter.Error != nil && iter.Error != io.EOF {
iter.Error = fmt.Errorf("%v: %s", decoder.arrayType, iter.Error.Error())
}
}
func (decoder *arrayDecoder) doDecode(ptr unsafe.Pointer, iter *Iterator) {
c := iter.nextToken()
arrayType := decoder.arrayType
if c == 'n' {
iter.skipThreeBytes('u', 'l', 'l')
return
}
if c != '[' {
iter.ReportError("decode array", "expect [ or n, but found "+string([]byte{c}))
return
}
c = iter.nextToken()
if c == ']' {
return
}
iter.unreadByte()
elemPtr := arrayType.UnsafeGetIndex(ptr, 0)
decoder.elemDecoder.Decode(elemPtr, iter)
length := 1
for c = iter.nextToken(); c == ','; c = iter.nextToken() {
if length >= arrayType.Len() {
iter.Skip()
continue
}
idx := length
length += 1
elemPtr = arrayType.UnsafeGetIndex(ptr, idx)
decoder.elemDecoder.Decode(elemPtr, iter)
}
if c != ']' {
iter.ReportError("decode array", "expect ], but found "+string([]byte{c}))
return
}
}

70
vendor/github.com/json-iterator/go/reflect_dynamic.go generated vendored Normal file
View File

@ -0,0 +1,70 @@
package jsoniter
import (
"github.com/modern-go/reflect2"
"reflect"
"unsafe"
)
type dynamicEncoder struct {
valType reflect2.Type
}
func (encoder *dynamicEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
obj := encoder.valType.UnsafeIndirect(ptr)
stream.WriteVal(obj)
}
func (encoder *dynamicEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return encoder.valType.UnsafeIndirect(ptr) == nil
}
type efaceDecoder struct {
}
func (decoder *efaceDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
pObj := (*interface{})(ptr)
obj := *pObj
if obj == nil {
*pObj = iter.Read()
return
}
typ := reflect2.TypeOf(obj)
if typ.Kind() != reflect.Ptr {
*pObj = iter.Read()
return
}
ptrType := typ.(*reflect2.UnsafePtrType)
ptrElemType := ptrType.Elem()
if iter.WhatIsNext() == NilValue {
if ptrElemType.Kind() != reflect.Ptr {
iter.skipFourBytes('n', 'u', 'l', 'l')
*pObj = nil
return
}
}
if reflect2.IsNil(obj) {
obj := ptrElemType.New()
iter.ReadVal(obj)
*pObj = obj
return
}
iter.ReadVal(obj)
}
type ifaceDecoder struct {
valType *reflect2.UnsafeIFaceType
}
func (decoder *ifaceDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
if iter.ReadNil() {
decoder.valType.UnsafeSet(ptr, decoder.valType.UnsafeNew())
return
}
obj := decoder.valType.UnsafeIndirect(ptr)
if reflect2.IsNil(obj) {
iter.ReportError("decode non empty interface", "can not unmarshal into nil")
return
}
iter.ReadVal(obj)
}

View File

@ -2,6 +2,7 @@ package jsoniter
import (
"fmt"
"github.com/modern-go/reflect2"
"reflect"
"sort"
"strings"
@ -17,17 +18,15 @@ var extensions = []Extension{}
// StructDescriptor describe how should we encode/decode the struct
type StructDescriptor struct {
onePtrEmbedded bool
onePtrOptimization bool
Type reflect.Type
Fields []*Binding
Type reflect2.Type
Fields []*Binding
}
// GetField get one field from the descriptor by its name.
// Can not use map here to keep field orders.
func (structDescriptor *StructDescriptor) GetField(fieldName string) *Binding {
for _, binding := range structDescriptor.Fields {
if binding.Field.Name == fieldName {
if binding.Field.Name() == fieldName {
return binding
}
}
@ -37,7 +36,7 @@ func (structDescriptor *StructDescriptor) GetField(fieldName string) *Binding {
// Binding describe how should we encode/decode the struct field
type Binding struct {
levels []int
Field *reflect.StructField
Field reflect2.StructField
FromNames []string
ToNames []string
Encoder ValEncoder
@ -48,10 +47,12 @@ type Binding struct {
// Can also rename fields by UpdateStructDescriptor.
type Extension interface {
UpdateStructDescriptor(structDescriptor *StructDescriptor)
CreateDecoder(typ reflect.Type) ValDecoder
CreateEncoder(typ reflect.Type) ValEncoder
DecorateDecoder(typ reflect.Type, decoder ValDecoder) ValDecoder
DecorateEncoder(typ reflect.Type, encoder ValEncoder) ValEncoder
CreateMapKeyDecoder(typ reflect2.Type) ValDecoder
CreateMapKeyEncoder(typ reflect2.Type) ValEncoder
CreateDecoder(typ reflect2.Type) ValDecoder
CreateEncoder(typ reflect2.Type) ValEncoder
DecorateDecoder(typ reflect2.Type, decoder ValDecoder) ValDecoder
DecorateEncoder(typ reflect2.Type, encoder ValEncoder) ValEncoder
}
// DummyExtension embed this type get dummy implementation for all methods of Extension
@ -62,23 +63,105 @@ type DummyExtension struct {
func (extension *DummyExtension) UpdateStructDescriptor(structDescriptor *StructDescriptor) {
}
// CreateMapKeyDecoder No-op
func (extension *DummyExtension) CreateMapKeyDecoder(typ reflect2.Type) ValDecoder {
return nil
}
// CreateMapKeyEncoder No-op
func (extension *DummyExtension) CreateMapKeyEncoder(typ reflect2.Type) ValEncoder {
return nil
}
// CreateDecoder No-op
func (extension *DummyExtension) CreateDecoder(typ reflect.Type) ValDecoder {
func (extension *DummyExtension) CreateDecoder(typ reflect2.Type) ValDecoder {
return nil
}
// CreateEncoder No-op
func (extension *DummyExtension) CreateEncoder(typ reflect.Type) ValEncoder {
func (extension *DummyExtension) CreateEncoder(typ reflect2.Type) ValEncoder {
return nil
}
// DecorateDecoder No-op
func (extension *DummyExtension) DecorateDecoder(typ reflect.Type, decoder ValDecoder) ValDecoder {
func (extension *DummyExtension) DecorateDecoder(typ reflect2.Type, decoder ValDecoder) ValDecoder {
return decoder
}
// DecorateEncoder No-op
func (extension *DummyExtension) DecorateEncoder(typ reflect.Type, encoder ValEncoder) ValEncoder {
func (extension *DummyExtension) DecorateEncoder(typ reflect2.Type, encoder ValEncoder) ValEncoder {
return encoder
}
type EncoderExtension map[reflect2.Type]ValEncoder
// UpdateStructDescriptor No-op
func (extension EncoderExtension) UpdateStructDescriptor(structDescriptor *StructDescriptor) {
}
// CreateDecoder No-op
func (extension EncoderExtension) CreateDecoder(typ reflect2.Type) ValDecoder {
return nil
}
// CreateEncoder get encoder from map
func (extension EncoderExtension) CreateEncoder(typ reflect2.Type) ValEncoder {
return extension[typ]
}
// CreateMapKeyDecoder No-op
func (extension EncoderExtension) CreateMapKeyDecoder(typ reflect2.Type) ValDecoder {
return nil
}
// CreateMapKeyEncoder No-op
func (extension EncoderExtension) CreateMapKeyEncoder(typ reflect2.Type) ValEncoder {
return nil
}
// DecorateDecoder No-op
func (extension EncoderExtension) DecorateDecoder(typ reflect2.Type, decoder ValDecoder) ValDecoder {
return decoder
}
// DecorateEncoder No-op
func (extension EncoderExtension) DecorateEncoder(typ reflect2.Type, encoder ValEncoder) ValEncoder {
return encoder
}
type DecoderExtension map[reflect2.Type]ValDecoder
// UpdateStructDescriptor No-op
func (extension DecoderExtension) UpdateStructDescriptor(structDescriptor *StructDescriptor) {
}
// CreateMapKeyDecoder No-op
func (extension DecoderExtension) CreateMapKeyDecoder(typ reflect2.Type) ValDecoder {
return nil
}
// CreateMapKeyEncoder No-op
func (extension DecoderExtension) CreateMapKeyEncoder(typ reflect2.Type) ValEncoder {
return nil
}
// CreateDecoder get decoder from map
func (extension DecoderExtension) CreateDecoder(typ reflect2.Type) ValDecoder {
return extension[typ]
}
// CreateEncoder No-op
func (extension DecoderExtension) CreateEncoder(typ reflect2.Type) ValEncoder {
return nil
}
// DecorateDecoder No-op
func (extension DecoderExtension) DecorateDecoder(typ reflect2.Type, decoder ValDecoder) ValDecoder {
return decoder
}
// DecorateEncoder No-op
func (extension DecoderExtension) DecorateEncoder(typ reflect2.Type, encoder ValEncoder) ValEncoder {
return encoder
}
@ -99,10 +182,6 @@ func (encoder *funcEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
encoder.fun(ptr, stream)
}
func (encoder *funcEncoder) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, encoder)
}
func (encoder *funcEncoder) IsEmpty(ptr unsafe.Pointer) bool {
if encoder.isEmptyFunc == nil {
return false
@ -161,26 +240,26 @@ func RegisterExtension(extension Extension) {
extensions = append(extensions, extension)
}
func getTypeDecoderFromExtension(cfg *frozenConfig, typ reflect.Type) ValDecoder {
decoder := _getTypeDecoderFromExtension(cfg, typ)
func getTypeDecoderFromExtension(ctx *ctx, typ reflect2.Type) ValDecoder {
decoder := _getTypeDecoderFromExtension(ctx, typ)
if decoder != nil {
for _, extension := range extensions {
decoder = extension.DecorateDecoder(typ, decoder)
}
for _, extension := range cfg.extensions {
for _, extension := range ctx.extensions {
decoder = extension.DecorateDecoder(typ, decoder)
}
}
return decoder
}
func _getTypeDecoderFromExtension(cfg *frozenConfig, typ reflect.Type) ValDecoder {
func _getTypeDecoderFromExtension(ctx *ctx, typ reflect2.Type) ValDecoder {
for _, extension := range extensions {
decoder := extension.CreateDecoder(typ)
if decoder != nil {
return decoder
}
}
for _, extension := range cfg.extensions {
for _, extension := range ctx.extensions {
decoder := extension.CreateDecoder(typ)
if decoder != nil {
return decoder
@ -192,35 +271,36 @@ func _getTypeDecoderFromExtension(cfg *frozenConfig, typ reflect.Type) ValDecode
return decoder
}
if typ.Kind() == reflect.Ptr {
decoder := typeDecoders[typ.Elem().String()]
ptrType := typ.(*reflect2.UnsafePtrType)
decoder := typeDecoders[ptrType.Elem().String()]
if decoder != nil {
return &OptionalDecoder{typ.Elem(), decoder}
return &OptionalDecoder{ptrType.Elem(), decoder}
}
}
return nil
}
func getTypeEncoderFromExtension(cfg *frozenConfig, typ reflect.Type) ValEncoder {
encoder := _getTypeEncoderFromExtension(cfg, typ)
func getTypeEncoderFromExtension(ctx *ctx, typ reflect2.Type) ValEncoder {
encoder := _getTypeEncoderFromExtension(ctx, typ)
if encoder != nil {
for _, extension := range extensions {
encoder = extension.DecorateEncoder(typ, encoder)
}
for _, extension := range cfg.extensions {
for _, extension := range ctx.extensions {
encoder = extension.DecorateEncoder(typ, encoder)
}
}
return encoder
}
func _getTypeEncoderFromExtension(cfg *frozenConfig, typ reflect.Type) ValEncoder {
func _getTypeEncoderFromExtension(ctx *ctx, typ reflect2.Type) ValEncoder {
for _, extension := range extensions {
encoder := extension.CreateEncoder(typ)
if encoder != nil {
return encoder
}
}
for _, extension := range cfg.extensions {
for _, extension := range ctx.extensions {
encoder := extension.CreateEncoder(typ)
if encoder != nil {
return encoder
@ -232,7 +312,8 @@ func _getTypeEncoderFromExtension(cfg *frozenConfig, typ reflect.Type) ValEncode
return encoder
}
if typ.Kind() == reflect.Ptr {
encoder := typeEncoders[typ.Elem().String()]
typePtr := typ.(*reflect2.UnsafePtrType)
encoder := typeEncoders[typePtr.Elem().String()]
if encoder != nil {
return &OptionalEncoder{encoder}
}
@ -240,72 +321,60 @@ func _getTypeEncoderFromExtension(cfg *frozenConfig, typ reflect.Type) ValEncode
return nil
}
func describeStruct(cfg *frozenConfig, typ reflect.Type) (*StructDescriptor, error) {
func describeStruct(ctx *ctx, typ reflect2.Type) *StructDescriptor {
structType := typ.(*reflect2.UnsafeStructType)
embeddedBindings := []*Binding{}
bindings := []*Binding{}
for i := 0; i < typ.NumField(); i++ {
field := typ.Field(i)
tag := field.Tag.Get(cfg.getTagKey())
for i := 0; i < structType.NumField(); i++ {
field := structType.Field(i)
tag, hastag := field.Tag().Lookup(ctx.getTagKey())
if ctx.onlyTaggedField && !hastag {
continue
}
tagParts := strings.Split(tag, ",")
if tag == "-" {
continue
}
if field.Anonymous && (tag == "" || tagParts[0] == "") {
if field.Type.Kind() == reflect.Struct {
structDescriptor, err := describeStruct(cfg, field.Type)
if err != nil {
return nil, err
}
if field.Anonymous() && (tag == "" || tagParts[0] == "") {
if field.Type().Kind() == reflect.Struct {
structDescriptor := describeStruct(ctx, field.Type())
for _, binding := range structDescriptor.Fields {
binding.levels = append([]int{i}, binding.levels...)
omitempty := binding.Encoder.(*structFieldEncoder).omitempty
binding.Encoder = &structFieldEncoder{&field, binding.Encoder, omitempty}
binding.Decoder = &structFieldDecoder{&field, binding.Decoder}
binding.Encoder = &structFieldEncoder{field, binding.Encoder, omitempty}
binding.Decoder = &structFieldDecoder{field, binding.Decoder}
embeddedBindings = append(embeddedBindings, binding)
}
continue
} else if field.Type.Kind() == reflect.Ptr && field.Type.Elem().Kind() == reflect.Struct {
structDescriptor, err := describeStruct(cfg, field.Type.Elem())
if err != nil {
return nil, err
} else if field.Type().Kind() == reflect.Ptr {
ptrType := field.Type().(*reflect2.UnsafePtrType)
if ptrType.Elem().Kind() == reflect.Struct {
structDescriptor := describeStruct(ctx, ptrType.Elem())
for _, binding := range structDescriptor.Fields {
binding.levels = append([]int{i}, binding.levels...)
omitempty := binding.Encoder.(*structFieldEncoder).omitempty
binding.Encoder = &dereferenceEncoder{binding.Encoder}
binding.Encoder = &structFieldEncoder{field, binding.Encoder, omitempty}
binding.Decoder = &dereferenceDecoder{ptrType.Elem(), binding.Decoder}
binding.Decoder = &structFieldDecoder{field, binding.Decoder}
embeddedBindings = append(embeddedBindings, binding)
}
continue
}
for _, binding := range structDescriptor.Fields {
binding.levels = append([]int{i}, binding.levels...)
omitempty := binding.Encoder.(*structFieldEncoder).omitempty
binding.Encoder = &OptionalEncoder{binding.Encoder}
binding.Encoder = &structFieldEncoder{&field, binding.Encoder, omitempty}
binding.Decoder = &deferenceDecoder{field.Type.Elem(), binding.Decoder}
binding.Decoder = &structFieldDecoder{&field, binding.Decoder}
embeddedBindings = append(embeddedBindings, binding)
}
continue
}
}
fieldNames := calcFieldNames(field.Name, tagParts[0], tag)
fieldCacheKey := fmt.Sprintf("%s/%s", typ.String(), field.Name)
fieldNames := calcFieldNames(field.Name(), tagParts[0], tag)
fieldCacheKey := fmt.Sprintf("%s/%s", typ.String(), field.Name())
decoder := fieldDecoders[fieldCacheKey]
if decoder == nil {
var err error
decoder, err = decoderOfType(cfg, field.Type)
if len(fieldNames) > 0 && err != nil {
return nil, err
}
decoder = decoderOfType(ctx.append(field.Name()), field.Type())
}
encoder := fieldEncoders[fieldCacheKey]
if encoder == nil {
var err error
encoder, err = encoderOfType(cfg, field.Type)
if len(fieldNames) > 0 && err != nil {
return nil, err
}
// map is stored as pointer in the struct,
// and treat nil or empty map as empty field
if encoder != nil && field.Type.Kind() == reflect.Map {
encoder = &optionalMapEncoder{encoder}
}
encoder = encoderOfType(ctx.append(field.Name()), field.Type())
}
binding := &Binding{
Field: &field,
Field: field,
FromNames: fieldNames,
ToNames: fieldNames,
Decoder: decoder,
@ -314,38 +383,20 @@ func describeStruct(cfg *frozenConfig, typ reflect.Type) (*StructDescriptor, err
binding.levels = []int{i}
bindings = append(bindings, binding)
}
return createStructDescriptor(cfg, typ, bindings, embeddedBindings), nil
return createStructDescriptor(ctx, typ, bindings, embeddedBindings)
}
func createStructDescriptor(cfg *frozenConfig, typ reflect.Type, bindings []*Binding, embeddedBindings []*Binding) *StructDescriptor {
onePtrEmbedded := false
onePtrOptimization := false
if typ.NumField() == 1 {
firstField := typ.Field(0)
switch firstField.Type.Kind() {
case reflect.Ptr:
if firstField.Anonymous && firstField.Type.Elem().Kind() == reflect.Struct {
onePtrEmbedded = true
}
fallthrough
case reflect.Map:
onePtrOptimization = true
case reflect.Struct:
onePtrOptimization = isStructOnePtr(firstField.Type)
}
}
func createStructDescriptor(ctx *ctx, typ reflect2.Type, bindings []*Binding, embeddedBindings []*Binding) *StructDescriptor {
structDescriptor := &StructDescriptor{
onePtrEmbedded: onePtrEmbedded,
onePtrOptimization: onePtrOptimization,
Type: typ,
Fields: bindings,
Type: typ,
Fields: bindings,
}
for _, extension := range extensions {
extension.UpdateStructDescriptor(structDescriptor)
}
for _, extension := range cfg.extensions {
for _, extension := range ctx.extensions {
extension.UpdateStructDescriptor(structDescriptor)
}
processTags(structDescriptor, cfg)
processTags(structDescriptor, ctx.frozenConfig)
// merge normal & embedded bindings & sort with original order
allBindings := sortableBindings(append(embeddedBindings, structDescriptor.Fields...))
sort.Sort(allBindings)
@ -353,21 +404,6 @@ func createStructDescriptor(cfg *frozenConfig, typ reflect.Type, bindings []*Bin
return structDescriptor
}
func isStructOnePtr(typ reflect.Type) bool {
if typ.NumField() == 1 {
firstField := typ.Field(0)
switch firstField.Type.Kind() {
case reflect.Ptr:
return true
case reflect.Map:
return true
case reflect.Struct:
return isStructOnePtr(firstField.Type)
}
}
return false
}
type sortableBindings []*Binding
func (bindings sortableBindings) Len() int {
@ -395,12 +431,12 @@ func (bindings sortableBindings) Swap(i, j int) {
func processTags(structDescriptor *StructDescriptor, cfg *frozenConfig) {
for _, binding := range structDescriptor.Fields {
shouldOmitEmpty := false
tagParts := strings.Split(binding.Field.Tag.Get(cfg.getTagKey()), ",")
tagParts := strings.Split(binding.Field.Tag().Get(cfg.getTagKey()), ",")
for _, tagPart := range tagParts[1:] {
if tagPart == "omitempty" {
shouldOmitEmpty = true
} else if tagPart == "string" {
if binding.Field.Type.Kind() == reflect.String {
if binding.Field.Type().Kind() == reflect.String {
binding.Decoder = &stringModeStringDecoder{binding.Decoder, cfg}
binding.Encoder = &stringModeStringEncoder{binding.Encoder, cfg}
} else {

View File

@ -0,0 +1,112 @@
package jsoniter
import (
"encoding/json"
"github.com/modern-go/reflect2"
"strconv"
"unsafe"
)
type Number string
// String returns the literal text of the number.
func (n Number) String() string { return string(n) }
// Float64 returns the number as a float64.
func (n Number) Float64() (float64, error) {
return strconv.ParseFloat(string(n), 64)
}
// Int64 returns the number as an int64.
func (n Number) Int64() (int64, error) {
return strconv.ParseInt(string(n), 10, 64)
}
func CastJsonNumber(val interface{}) (string, bool) {
switch typedVal := val.(type) {
case json.Number:
return string(typedVal), true
case Number:
return string(typedVal), true
}
return "", false
}
var jsonNumberType = reflect2.TypeOfPtr((*json.Number)(nil)).Elem()
var jsoniterNumberType = reflect2.TypeOfPtr((*Number)(nil)).Elem()
func createDecoderOfJsonNumber(ctx *ctx, typ reflect2.Type) ValDecoder {
if typ.AssignableTo(jsonNumberType) {
return &jsonNumberCodec{}
}
if typ.AssignableTo(jsoniterNumberType) {
return &jsoniterNumberCodec{}
}
return nil
}
func createEncoderOfJsonNumber(ctx *ctx, typ reflect2.Type) ValEncoder {
if typ.AssignableTo(jsonNumberType) {
return &jsonNumberCodec{}
}
if typ.AssignableTo(jsoniterNumberType) {
return &jsoniterNumberCodec{}
}
return nil
}
type jsonNumberCodec struct {
}
func (codec *jsonNumberCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
switch iter.WhatIsNext() {
case StringValue:
*((*json.Number)(ptr)) = json.Number(iter.ReadString())
case NilValue:
iter.skipFourBytes('n', 'u', 'l', 'l')
*((*json.Number)(ptr)) = ""
default:
*((*json.Number)(ptr)) = json.Number([]byte(iter.readNumberAsString()))
}
}
func (codec *jsonNumberCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
number := *((*json.Number)(ptr))
if len(number) == 0 {
stream.writeByte('0')
} else {
stream.WriteRaw(string(number))
}
}
func (codec *jsonNumberCodec) IsEmpty(ptr unsafe.Pointer) bool {
return len(*((*json.Number)(ptr))) == 0
}
type jsoniterNumberCodec struct {
}
func (codec *jsoniterNumberCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
switch iter.WhatIsNext() {
case StringValue:
*((*Number)(ptr)) = Number(iter.ReadString())
case NilValue:
iter.skipFourBytes('n', 'u', 'l', 'l')
*((*Number)(ptr)) = ""
default:
*((*Number)(ptr)) = Number([]byte(iter.readNumberAsString()))
}
}
func (codec *jsoniterNumberCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
number := *((*Number)(ptr))
if len(number) == 0 {
stream.writeByte('0')
} else {
stream.WriteRaw(string(number))
}
}
func (codec *jsoniterNumberCodec) IsEmpty(ptr unsafe.Pointer) bool {
return len(*((*Number)(ptr))) == 0
}

View File

@ -0,0 +1,60 @@
package jsoniter
import (
"encoding/json"
"github.com/modern-go/reflect2"
"unsafe"
)
var jsonRawMessageType = reflect2.TypeOfPtr((*json.RawMessage)(nil)).Elem()
var jsoniterRawMessageType = reflect2.TypeOfPtr((*RawMessage)(nil)).Elem()
func createEncoderOfJsonRawMessage(ctx *ctx, typ reflect2.Type) ValEncoder {
if typ == jsonRawMessageType {
return &jsonRawMessageCodec{}
}
if typ == jsoniterRawMessageType {
return &jsoniterRawMessageCodec{}
}
return nil
}
func createDecoderOfJsonRawMessage(ctx *ctx, typ reflect2.Type) ValDecoder {
if typ == jsonRawMessageType {
return &jsonRawMessageCodec{}
}
if typ == jsoniterRawMessageType {
return &jsoniterRawMessageCodec{}
}
return nil
}
type jsonRawMessageCodec struct {
}
func (codec *jsonRawMessageCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
*((*json.RawMessage)(ptr)) = json.RawMessage(iter.SkipAndReturnBytes())
}
func (codec *jsonRawMessageCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteRaw(string(*((*json.RawMessage)(ptr))))
}
func (codec *jsonRawMessageCodec) IsEmpty(ptr unsafe.Pointer) bool {
return len(*((*json.RawMessage)(ptr))) == 0
}
type jsoniterRawMessageCodec struct {
}
func (codec *jsoniterRawMessageCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
*((*RawMessage)(ptr)) = RawMessage(iter.SkipAndReturnBytes())
}
func (codec *jsoniterRawMessageCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteRaw(string(*((*RawMessage)(ptr))))
}
func (codec *jsoniterRawMessageCodec) IsEmpty(ptr unsafe.Pointer) bool {
return len(*((*RawMessage)(ptr))) == 0
}

318
vendor/github.com/json-iterator/go/reflect_map.go generated vendored Normal file
View File

@ -0,0 +1,318 @@
package jsoniter
import (
"fmt"
"github.com/modern-go/reflect2"
"io"
"reflect"
"sort"
"unsafe"
)
func decoderOfMap(ctx *ctx, typ reflect2.Type) ValDecoder {
mapType := typ.(*reflect2.UnsafeMapType)
keyDecoder := decoderOfMapKey(ctx.append("[mapKey]"), mapType.Key())
elemDecoder := decoderOfType(ctx.append("[mapElem]"), mapType.Elem())
return &mapDecoder{
mapType: mapType,
keyType: mapType.Key(),
elemType: mapType.Elem(),
keyDecoder: keyDecoder,
elemDecoder: elemDecoder,
}
}
func encoderOfMap(ctx *ctx, typ reflect2.Type) ValEncoder {
mapType := typ.(*reflect2.UnsafeMapType)
if ctx.sortMapKeys {
return &sortKeysMapEncoder{
mapType: mapType,
keyEncoder: encoderOfMapKey(ctx.append("[mapKey]"), mapType.Key()),
elemEncoder: encoderOfType(ctx.append("[mapElem]"), mapType.Elem()),
}
}
return &mapEncoder{
mapType: mapType,
keyEncoder: encoderOfMapKey(ctx.append("[mapKey]"), mapType.Key()),
elemEncoder: encoderOfType(ctx.append("[mapElem]"), mapType.Elem()),
}
}
func decoderOfMapKey(ctx *ctx, typ reflect2.Type) ValDecoder {
for _, extension := range ctx.extensions {
decoder := extension.CreateMapKeyDecoder(typ)
if decoder != nil {
return decoder
}
}
switch typ.Kind() {
case reflect.String:
return decoderOfType(ctx, reflect2.DefaultTypeOfKind(reflect.String))
case reflect.Bool,
reflect.Uint8, reflect.Int8,
reflect.Uint16, reflect.Int16,
reflect.Uint32, reflect.Int32,
reflect.Uint64, reflect.Int64,
reflect.Uint, reflect.Int,
reflect.Float32, reflect.Float64,
reflect.Uintptr:
typ = reflect2.DefaultTypeOfKind(typ.Kind())
return &numericMapKeyDecoder{decoderOfType(ctx, typ)}
default:
ptrType := reflect2.PtrTo(typ)
if ptrType.Implements(textMarshalerType) {
return &referenceDecoder{
&textUnmarshalerDecoder{
valType: ptrType,
},
}
}
if typ.Implements(textMarshalerType) {
return &textUnmarshalerDecoder{
valType: typ,
}
}
return &lazyErrorDecoder{err: fmt.Errorf("unsupported map key type: %v", typ)}
}
}
func encoderOfMapKey(ctx *ctx, typ reflect2.Type) ValEncoder {
for _, extension := range ctx.extensions {
encoder := extension.CreateMapKeyEncoder(typ)
if encoder != nil {
return encoder
}
}
switch typ.Kind() {
case reflect.String:
return encoderOfType(ctx, reflect2.DefaultTypeOfKind(reflect.String))
case reflect.Bool,
reflect.Uint8, reflect.Int8,
reflect.Uint16, reflect.Int16,
reflect.Uint32, reflect.Int32,
reflect.Uint64, reflect.Int64,
reflect.Uint, reflect.Int,
reflect.Float32, reflect.Float64,
reflect.Uintptr:
typ = reflect2.DefaultTypeOfKind(typ.Kind())
return &numericMapKeyEncoder{encoderOfType(ctx, typ)}
default:
if typ == textMarshalerType {
return &directTextMarshalerEncoder{
stringEncoder: ctx.EncoderOf(reflect2.TypeOf("")),
}
}
if typ.Implements(textMarshalerType) {
return &textMarshalerEncoder{
valType: typ,
stringEncoder: ctx.EncoderOf(reflect2.TypeOf("")),
}
}
if typ.Kind() == reflect.Interface {
return &dynamicMapKeyEncoder{ctx, typ}
}
return &lazyErrorEncoder{err: fmt.Errorf("unsupported map key type: %v", typ)}
}
}
type mapDecoder struct {
mapType *reflect2.UnsafeMapType
keyType reflect2.Type
elemType reflect2.Type
keyDecoder ValDecoder
elemDecoder ValDecoder
}
func (decoder *mapDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
mapType := decoder.mapType
c := iter.nextToken()
if c == 'n' {
iter.skipThreeBytes('u', 'l', 'l')
*(*unsafe.Pointer)(ptr) = nil
mapType.UnsafeSet(ptr, mapType.UnsafeNew())
return
}
if mapType.UnsafeIsNil(ptr) {
mapType.UnsafeSet(ptr, mapType.UnsafeMakeMap(0))
}
if c != '{' {
iter.ReportError("ReadMapCB", `expect { or n, but found `+string([]byte{c}))
return
}
c = iter.nextToken()
if c == '}' {
return
}
if c != '"' {
iter.ReportError("ReadMapCB", `expect " after }, but found `+string([]byte{c}))
return
}
iter.unreadByte()
key := decoder.keyType.UnsafeNew()
decoder.keyDecoder.Decode(key, iter)
c = iter.nextToken()
if c != ':' {
iter.ReportError("ReadMapCB", "expect : after object field, but found "+string([]byte{c}))
return
}
elem := decoder.elemType.UnsafeNew()
decoder.elemDecoder.Decode(elem, iter)
decoder.mapType.UnsafeSetIndex(ptr, key, elem)
for c = iter.nextToken(); c == ','; c = iter.nextToken() {
key := decoder.keyType.UnsafeNew()
decoder.keyDecoder.Decode(key, iter)
c = iter.nextToken()
if c != ':' {
iter.ReportError("ReadMapCB", "expect : after object field, but found "+string([]byte{c}))
return
}
elem := decoder.elemType.UnsafeNew()
decoder.elemDecoder.Decode(elem, iter)
decoder.mapType.UnsafeSetIndex(ptr, key, elem)
}
if c != '}' {
iter.ReportError("ReadMapCB", `expect }, but found `+string([]byte{c}))
}
}
type numericMapKeyDecoder struct {
decoder ValDecoder
}
func (decoder *numericMapKeyDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
c := iter.nextToken()
if c != '"' {
iter.ReportError("ReadMapCB", `expect ", but found `+string([]byte{c}))
return
}
decoder.decoder.Decode(ptr, iter)
c = iter.nextToken()
if c != '"' {
iter.ReportError("ReadMapCB", `expect ", but found `+string([]byte{c}))
return
}
}
type numericMapKeyEncoder struct {
encoder ValEncoder
}
func (encoder *numericMapKeyEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.writeByte('"')
encoder.encoder.Encode(ptr, stream)
stream.writeByte('"')
}
func (encoder *numericMapKeyEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return false
}
type dynamicMapKeyEncoder struct {
ctx *ctx
valType reflect2.Type
}
func (encoder *dynamicMapKeyEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
obj := encoder.valType.UnsafeIndirect(ptr)
encoderOfMapKey(encoder.ctx, reflect2.TypeOf(obj)).Encode(reflect2.PtrOf(obj), stream)
}
func (encoder *dynamicMapKeyEncoder) IsEmpty(ptr unsafe.Pointer) bool {
obj := encoder.valType.UnsafeIndirect(ptr)
return encoderOfMapKey(encoder.ctx, reflect2.TypeOf(obj)).IsEmpty(reflect2.PtrOf(obj))
}
type mapEncoder struct {
mapType *reflect2.UnsafeMapType
keyEncoder ValEncoder
elemEncoder ValEncoder
}
func (encoder *mapEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteObjectStart()
iter := encoder.mapType.UnsafeIterate(ptr)
for i := 0; iter.HasNext(); i++ {
if i != 0 {
stream.WriteMore()
}
key, elem := iter.UnsafeNext()
encoder.keyEncoder.Encode(key, stream)
if stream.indention > 0 {
stream.writeTwoBytes(byte(':'), byte(' '))
} else {
stream.writeByte(':')
}
encoder.elemEncoder.Encode(elem, stream)
}
stream.WriteObjectEnd()
}
func (encoder *mapEncoder) IsEmpty(ptr unsafe.Pointer) bool {
iter := encoder.mapType.UnsafeIterate(ptr)
return !iter.HasNext()
}
type sortKeysMapEncoder struct {
mapType *reflect2.UnsafeMapType
keyEncoder ValEncoder
elemEncoder ValEncoder
}
func (encoder *sortKeysMapEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
if *(*unsafe.Pointer)(ptr) == nil {
stream.WriteNil()
return
}
stream.WriteObjectStart()
mapIter := encoder.mapType.UnsafeIterate(ptr)
subStream := stream.cfg.BorrowStream(nil)
subIter := stream.cfg.BorrowIterator(nil)
keyValues := encodedKeyValues{}
for mapIter.HasNext() {
subStream.buf = make([]byte, 0, 64)
key, elem := mapIter.UnsafeNext()
encoder.keyEncoder.Encode(key, subStream)
if subStream.Error != nil && subStream.Error != io.EOF && stream.Error == nil {
stream.Error = subStream.Error
}
encodedKey := subStream.Buffer()
subIter.ResetBytes(encodedKey)
decodedKey := subIter.ReadString()
if stream.indention > 0 {
subStream.writeTwoBytes(byte(':'), byte(' '))
} else {
subStream.writeByte(':')
}
encoder.elemEncoder.Encode(elem, subStream)
keyValues = append(keyValues, encodedKV{
key: decodedKey,
keyValue: subStream.Buffer(),
})
}
sort.Sort(keyValues)
for i, keyValue := range keyValues {
if i != 0 {
stream.WriteMore()
}
stream.Write(keyValue.keyValue)
}
stream.WriteObjectEnd()
stream.cfg.ReturnStream(subStream)
stream.cfg.ReturnIterator(subIter)
}
func (encoder *sortKeysMapEncoder) IsEmpty(ptr unsafe.Pointer) bool {
iter := encoder.mapType.UnsafeIterate(ptr)
return !iter.HasNext()
}
type encodedKeyValues []encodedKV
type encodedKV struct {
key string
keyValue []byte
}
func (sv encodedKeyValues) Len() int { return len(sv) }
func (sv encodedKeyValues) Swap(i, j int) { sv[i], sv[j] = sv[j], sv[i] }
func (sv encodedKeyValues) Less(i, j int) bool { return sv[i].key < sv[j].key }

218
vendor/github.com/json-iterator/go/reflect_marshaler.go generated vendored Normal file
View File

@ -0,0 +1,218 @@
package jsoniter
import (
"encoding"
"encoding/json"
"github.com/modern-go/reflect2"
"unsafe"
)
var marshalerType = reflect2.TypeOfPtr((*json.Marshaler)(nil)).Elem()
var unmarshalerType = reflect2.TypeOfPtr((*json.Unmarshaler)(nil)).Elem()
var textMarshalerType = reflect2.TypeOfPtr((*encoding.TextMarshaler)(nil)).Elem()
var textUnmarshalerType = reflect2.TypeOfPtr((*encoding.TextUnmarshaler)(nil)).Elem()
func createDecoderOfMarshaler(ctx *ctx, typ reflect2.Type) ValDecoder {
ptrType := reflect2.PtrTo(typ)
if ptrType.Implements(unmarshalerType) {
return &referenceDecoder{
&unmarshalerDecoder{ptrType},
}
}
if ptrType.Implements(textUnmarshalerType) {
return &referenceDecoder{
&textUnmarshalerDecoder{ptrType},
}
}
return nil
}
func createEncoderOfMarshaler(ctx *ctx, typ reflect2.Type) ValEncoder {
if typ == marshalerType {
checkIsEmpty := createCheckIsEmpty(ctx, typ)
var encoder ValEncoder = &directMarshalerEncoder{
checkIsEmpty: checkIsEmpty,
}
return encoder
}
if typ.Implements(marshalerType) {
checkIsEmpty := createCheckIsEmpty(ctx, typ)
var encoder ValEncoder = &marshalerEncoder{
valType: typ,
checkIsEmpty: checkIsEmpty,
}
return encoder
}
ptrType := reflect2.PtrTo(typ)
if ctx.prefix != "" && ptrType.Implements(marshalerType) {
checkIsEmpty := createCheckIsEmpty(ctx, ptrType)
var encoder ValEncoder = &marshalerEncoder{
valType: ptrType,
checkIsEmpty: checkIsEmpty,
}
return &referenceEncoder{encoder}
}
if typ == textMarshalerType {
checkIsEmpty := createCheckIsEmpty(ctx, typ)
var encoder ValEncoder = &directTextMarshalerEncoder{
checkIsEmpty: checkIsEmpty,
stringEncoder: ctx.EncoderOf(reflect2.TypeOf("")),
}
return encoder
}
if typ.Implements(textMarshalerType) {
checkIsEmpty := createCheckIsEmpty(ctx, typ)
var encoder ValEncoder = &textMarshalerEncoder{
valType: typ,
stringEncoder: ctx.EncoderOf(reflect2.TypeOf("")),
checkIsEmpty: checkIsEmpty,
}
return encoder
}
// if prefix is empty, the type is the root type
if ctx.prefix != "" && ptrType.Implements(textMarshalerType) {
checkIsEmpty := createCheckIsEmpty(ctx, ptrType)
var encoder ValEncoder = &textMarshalerEncoder{
valType: ptrType,
stringEncoder: ctx.EncoderOf(reflect2.TypeOf("")),
checkIsEmpty: checkIsEmpty,
}
return &referenceEncoder{encoder}
}
return nil
}
type marshalerEncoder struct {
checkIsEmpty checkIsEmpty
valType reflect2.Type
}
func (encoder *marshalerEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
obj := encoder.valType.UnsafeIndirect(ptr)
if encoder.valType.IsNullable() && reflect2.IsNil(obj) {
stream.WriteNil()
return
}
marshaler := obj.(json.Marshaler)
bytes, err := marshaler.MarshalJSON()
if err != nil {
stream.Error = err
} else {
stream.Write(bytes)
}
}
func (encoder *marshalerEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return encoder.checkIsEmpty.IsEmpty(ptr)
}
type directMarshalerEncoder struct {
checkIsEmpty checkIsEmpty
}
func (encoder *directMarshalerEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
marshaler := *(*json.Marshaler)(ptr)
if marshaler == nil {
stream.WriteNil()
return
}
bytes, err := marshaler.MarshalJSON()
if err != nil {
stream.Error = err
} else {
stream.Write(bytes)
}
}
func (encoder *directMarshalerEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return encoder.checkIsEmpty.IsEmpty(ptr)
}
type textMarshalerEncoder struct {
valType reflect2.Type
stringEncoder ValEncoder
checkIsEmpty checkIsEmpty
}
func (encoder *textMarshalerEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
obj := encoder.valType.UnsafeIndirect(ptr)
if encoder.valType.IsNullable() && reflect2.IsNil(obj) {
stream.WriteNil()
return
}
marshaler := (obj).(encoding.TextMarshaler)
bytes, err := marshaler.MarshalText()
if err != nil {
stream.Error = err
} else {
str := string(bytes)
encoder.stringEncoder.Encode(unsafe.Pointer(&str), stream)
}
}
func (encoder *textMarshalerEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return encoder.checkIsEmpty.IsEmpty(ptr)
}
type directTextMarshalerEncoder struct {
stringEncoder ValEncoder
checkIsEmpty checkIsEmpty
}
func (encoder *directTextMarshalerEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
marshaler := *(*encoding.TextMarshaler)(ptr)
if marshaler == nil {
stream.WriteNil()
return
}
bytes, err := marshaler.MarshalText()
if err != nil {
stream.Error = err
} else {
str := string(bytes)
encoder.stringEncoder.Encode(unsafe.Pointer(&str), stream)
}
}
func (encoder *directTextMarshalerEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return encoder.checkIsEmpty.IsEmpty(ptr)
}
type unmarshalerDecoder struct {
valType reflect2.Type
}
func (decoder *unmarshalerDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
valType := decoder.valType
obj := valType.UnsafeIndirect(ptr)
unmarshaler := obj.(json.Unmarshaler)
iter.nextToken()
iter.unreadByte() // skip spaces
bytes := iter.SkipAndReturnBytes()
err := unmarshaler.UnmarshalJSON(bytes)
if err != nil {
iter.ReportError("unmarshalerDecoder", err.Error())
}
}
type textUnmarshalerDecoder struct {
valType reflect2.Type
}
func (decoder *textUnmarshalerDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
valType := decoder.valType
obj := valType.UnsafeIndirect(ptr)
if reflect2.IsNil(obj) {
ptrType := valType.(*reflect2.UnsafePtrType)
elemType := ptrType.Elem()
elem := elemType.UnsafeNew()
ptrType.UnsafeSet(ptr, unsafe.Pointer(&elem))
obj = valType.UnsafeIndirect(ptr)
}
unmarshaler := (obj).(encoding.TextUnmarshaler)
str := iter.ReadString()
err := unmarshaler.UnmarshalText([]byte(str))
if err != nil {
iter.ReportError("textUnmarshalerDecoder", err.Error())
}
}

451
vendor/github.com/json-iterator/go/reflect_native.go generated vendored Normal file
View File

@ -0,0 +1,451 @@
package jsoniter
import (
"encoding/base64"
"reflect"
"strconv"
"unsafe"
"github.com/modern-go/reflect2"
)
const ptrSize = 32 << uintptr(^uintptr(0)>>63)
func createEncoderOfNative(ctx *ctx, typ reflect2.Type) ValEncoder {
if typ.Kind() == reflect.Slice && typ.(reflect2.SliceType).Elem().Kind() == reflect.Uint8 {
sliceDecoder := decoderOfSlice(ctx, typ)
return &base64Codec{sliceDecoder: sliceDecoder}
}
typeName := typ.String()
kind := typ.Kind()
switch kind {
case reflect.String:
if typeName != "string" {
return encoderOfType(ctx, reflect2.TypeOfPtr((*string)(nil)).Elem())
}
return &stringCodec{}
case reflect.Int:
if typeName != "int" {
return encoderOfType(ctx, reflect2.TypeOfPtr((*int)(nil)).Elem())
}
if strconv.IntSize == 32 {
return &int32Codec{}
}
return &int64Codec{}
case reflect.Int8:
if typeName != "int8" {
return encoderOfType(ctx, reflect2.TypeOfPtr((*int8)(nil)).Elem())
}
return &int8Codec{}
case reflect.Int16:
if typeName != "int16" {
return encoderOfType(ctx, reflect2.TypeOfPtr((*int16)(nil)).Elem())
}
return &int16Codec{}
case reflect.Int32:
if typeName != "int32" {
return encoderOfType(ctx, reflect2.TypeOfPtr((*int32)(nil)).Elem())
}
return &int32Codec{}
case reflect.Int64:
if typeName != "int64" {
return encoderOfType(ctx, reflect2.TypeOfPtr((*int64)(nil)).Elem())
}
return &int64Codec{}
case reflect.Uint:
if typeName != "uint" {
return encoderOfType(ctx, reflect2.TypeOfPtr((*uint)(nil)).Elem())
}
if strconv.IntSize == 32 {
return &uint32Codec{}
}
return &uint64Codec{}
case reflect.Uint8:
if typeName != "uint8" {
return encoderOfType(ctx, reflect2.TypeOfPtr((*uint8)(nil)).Elem())
}
return &uint8Codec{}
case reflect.Uint16:
if typeName != "uint16" {
return encoderOfType(ctx, reflect2.TypeOfPtr((*uint16)(nil)).Elem())
}
return &uint16Codec{}
case reflect.Uint32:
if typeName != "uint32" {
return encoderOfType(ctx, reflect2.TypeOfPtr((*uint32)(nil)).Elem())
}
return &uint32Codec{}
case reflect.Uintptr:
if typeName != "uintptr" {
return encoderOfType(ctx, reflect2.TypeOfPtr((*uintptr)(nil)).Elem())
}
if ptrSize == 32 {
return &uint32Codec{}
}
return &uint64Codec{}
case reflect.Uint64:
if typeName != "uint64" {
return encoderOfType(ctx, reflect2.TypeOfPtr((*uint64)(nil)).Elem())
}
return &uint64Codec{}
case reflect.Float32:
if typeName != "float32" {
return encoderOfType(ctx, reflect2.TypeOfPtr((*float32)(nil)).Elem())
}
return &float32Codec{}
case reflect.Float64:
if typeName != "float64" {
return encoderOfType(ctx, reflect2.TypeOfPtr((*float64)(nil)).Elem())
}
return &float64Codec{}
case reflect.Bool:
if typeName != "bool" {
return encoderOfType(ctx, reflect2.TypeOfPtr((*bool)(nil)).Elem())
}
return &boolCodec{}
}
return nil
}
func createDecoderOfNative(ctx *ctx, typ reflect2.Type) ValDecoder {
if typ.Kind() == reflect.Slice && typ.(reflect2.SliceType).Elem().Kind() == reflect.Uint8 {
sliceDecoder := decoderOfSlice(ctx, typ)
return &base64Codec{sliceDecoder: sliceDecoder}
}
typeName := typ.String()
switch typ.Kind() {
case reflect.String:
if typeName != "string" {
return decoderOfType(ctx, reflect2.TypeOfPtr((*string)(nil)).Elem())
}
return &stringCodec{}
case reflect.Int:
if typeName != "int" {
return decoderOfType(ctx, reflect2.TypeOfPtr((*int)(nil)).Elem())
}
if strconv.IntSize == 32 {
return &int32Codec{}
}
return &int64Codec{}
case reflect.Int8:
if typeName != "int8" {
return decoderOfType(ctx, reflect2.TypeOfPtr((*int8)(nil)).Elem())
}
return &int8Codec{}
case reflect.Int16:
if typeName != "int16" {
return decoderOfType(ctx, reflect2.TypeOfPtr((*int16)(nil)).Elem())
}
return &int16Codec{}
case reflect.Int32:
if typeName != "int32" {
return decoderOfType(ctx, reflect2.TypeOfPtr((*int32)(nil)).Elem())
}
return &int32Codec{}
case reflect.Int64:
if typeName != "int64" {
return decoderOfType(ctx, reflect2.TypeOfPtr((*int64)(nil)).Elem())
}
return &int64Codec{}
case reflect.Uint:
if typeName != "uint" {
return decoderOfType(ctx, reflect2.TypeOfPtr((*uint)(nil)).Elem())
}
if strconv.IntSize == 32 {
return &uint32Codec{}
}
return &uint64Codec{}
case reflect.Uint8:
if typeName != "uint8" {
return decoderOfType(ctx, reflect2.TypeOfPtr((*uint8)(nil)).Elem())
}
return &uint8Codec{}
case reflect.Uint16:
if typeName != "uint16" {
return decoderOfType(ctx, reflect2.TypeOfPtr((*uint16)(nil)).Elem())
}
return &uint16Codec{}
case reflect.Uint32:
if typeName != "uint32" {
return decoderOfType(ctx, reflect2.TypeOfPtr((*uint32)(nil)).Elem())
}
return &uint32Codec{}
case reflect.Uintptr:
if typeName != "uintptr" {
return decoderOfType(ctx, reflect2.TypeOfPtr((*uintptr)(nil)).Elem())
}
if ptrSize == 32 {
return &uint32Codec{}
}
return &uint64Codec{}
case reflect.Uint64:
if typeName != "uint64" {
return decoderOfType(ctx, reflect2.TypeOfPtr((*uint64)(nil)).Elem())
}
return &uint64Codec{}
case reflect.Float32:
if typeName != "float32" {
return decoderOfType(ctx, reflect2.TypeOfPtr((*float32)(nil)).Elem())
}
return &float32Codec{}
case reflect.Float64:
if typeName != "float64" {
return decoderOfType(ctx, reflect2.TypeOfPtr((*float64)(nil)).Elem())
}
return &float64Codec{}
case reflect.Bool:
if typeName != "bool" {
return decoderOfType(ctx, reflect2.TypeOfPtr((*bool)(nil)).Elem())
}
return &boolCodec{}
}
return nil
}
type stringCodec struct {
}
func (codec *stringCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
*((*string)(ptr)) = iter.ReadString()
}
func (codec *stringCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
str := *((*string)(ptr))
stream.WriteString(str)
}
func (codec *stringCodec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*string)(ptr)) == ""
}
type int8Codec struct {
}
func (codec *int8Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*int8)(ptr)) = iter.ReadInt8()
}
}
func (codec *int8Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteInt8(*((*int8)(ptr)))
}
func (codec *int8Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*int8)(ptr)) == 0
}
type int16Codec struct {
}
func (codec *int16Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*int16)(ptr)) = iter.ReadInt16()
}
}
func (codec *int16Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteInt16(*((*int16)(ptr)))
}
func (codec *int16Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*int16)(ptr)) == 0
}
type int32Codec struct {
}
func (codec *int32Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*int32)(ptr)) = iter.ReadInt32()
}
}
func (codec *int32Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteInt32(*((*int32)(ptr)))
}
func (codec *int32Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*int32)(ptr)) == 0
}
type int64Codec struct {
}
func (codec *int64Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*int64)(ptr)) = iter.ReadInt64()
}
}
func (codec *int64Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteInt64(*((*int64)(ptr)))
}
func (codec *int64Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*int64)(ptr)) == 0
}
type uint8Codec struct {
}
func (codec *uint8Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*uint8)(ptr)) = iter.ReadUint8()
}
}
func (codec *uint8Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteUint8(*((*uint8)(ptr)))
}
func (codec *uint8Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*uint8)(ptr)) == 0
}
type uint16Codec struct {
}
func (codec *uint16Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*uint16)(ptr)) = iter.ReadUint16()
}
}
func (codec *uint16Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteUint16(*((*uint16)(ptr)))
}
func (codec *uint16Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*uint16)(ptr)) == 0
}
type uint32Codec struct {
}
func (codec *uint32Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*uint32)(ptr)) = iter.ReadUint32()
}
}
func (codec *uint32Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteUint32(*((*uint32)(ptr)))
}
func (codec *uint32Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*uint32)(ptr)) == 0
}
type uint64Codec struct {
}
func (codec *uint64Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*uint64)(ptr)) = iter.ReadUint64()
}
}
func (codec *uint64Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteUint64(*((*uint64)(ptr)))
}
func (codec *uint64Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*uint64)(ptr)) == 0
}
type float32Codec struct {
}
func (codec *float32Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*float32)(ptr)) = iter.ReadFloat32()
}
}
func (codec *float32Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteFloat32(*((*float32)(ptr)))
}
func (codec *float32Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*float32)(ptr)) == 0
}
type float64Codec struct {
}
func (codec *float64Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*float64)(ptr)) = iter.ReadFloat64()
}
}
func (codec *float64Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteFloat64(*((*float64)(ptr)))
}
func (codec *float64Codec) IsEmpty(ptr unsafe.Pointer) bool {
return *((*float64)(ptr)) == 0
}
type boolCodec struct {
}
func (codec *boolCodec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.ReadNil() {
*((*bool)(ptr)) = iter.ReadBool()
}
}
func (codec *boolCodec) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteBool(*((*bool)(ptr)))
}
func (codec *boolCodec) IsEmpty(ptr unsafe.Pointer) bool {
return !(*((*bool)(ptr)))
}
type base64Codec struct {
sliceType *reflect2.UnsafeSliceType
sliceDecoder ValDecoder
}
func (codec *base64Codec) Decode(ptr unsafe.Pointer, iter *Iterator) {
if iter.ReadNil() {
codec.sliceType.UnsafeSetNil(ptr)
return
}
switch iter.WhatIsNext() {
case StringValue:
src := iter.ReadString()
dst, err := base64.StdEncoding.DecodeString(src)
if err != nil {
iter.ReportError("decode base64", err.Error())
} else {
codec.sliceType.UnsafeSet(ptr, unsafe.Pointer(&dst))
}
case ArrayValue:
codec.sliceDecoder.Decode(ptr, iter)
default:
iter.ReportError("base64Codec", "invalid input")
}
}
func (codec *base64Codec) Encode(ptr unsafe.Pointer, stream *Stream) {
src := *((*[]byte)(ptr))
if len(src) == 0 {
stream.WriteNil()
return
}
encoding := base64.StdEncoding
stream.writeByte('"')
size := encoding.EncodedLen(len(src))
buf := make([]byte, size)
encoding.Encode(buf, src)
stream.buf = append(stream.buf, buf...)
stream.writeByte('"')
}
func (codec *base64Codec) IsEmpty(ptr unsafe.Pointer) bool {
return len(*((*[]byte)(ptr))) == 0
}

133
vendor/github.com/json-iterator/go/reflect_optional.go generated vendored Normal file
View File

@ -0,0 +1,133 @@
package jsoniter
import (
"github.com/modern-go/reflect2"
"reflect"
"unsafe"
)
func decoderOfOptional(ctx *ctx, typ reflect2.Type) ValDecoder {
ptrType := typ.(*reflect2.UnsafePtrType)
elemType := ptrType.Elem()
decoder := decoderOfType(ctx, elemType)
if ctx.prefix == "" && elemType.Kind() == reflect.Ptr {
return &dereferenceDecoder{elemType, decoder}
}
return &OptionalDecoder{elemType, decoder}
}
func encoderOfOptional(ctx *ctx, typ reflect2.Type) ValEncoder {
ptrType := typ.(*reflect2.UnsafePtrType)
elemType := ptrType.Elem()
elemEncoder := encoderOfType(ctx, elemType)
encoder := &OptionalEncoder{elemEncoder}
return encoder
}
type OptionalDecoder struct {
ValueType reflect2.Type
ValueDecoder ValDecoder
}
func (decoder *OptionalDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
if iter.ReadNil() {
*((*unsafe.Pointer)(ptr)) = nil
} else {
if *((*unsafe.Pointer)(ptr)) == nil {
//pointer to null, we have to allocate memory to hold the value
newPtr := decoder.ValueType.UnsafeNew()
decoder.ValueDecoder.Decode(newPtr, iter)
*((*unsafe.Pointer)(ptr)) = newPtr
} else {
//reuse existing instance
decoder.ValueDecoder.Decode(*((*unsafe.Pointer)(ptr)), iter)
}
}
}
type dereferenceDecoder struct {
// only to deference a pointer
valueType reflect2.Type
valueDecoder ValDecoder
}
func (decoder *dereferenceDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
if *((*unsafe.Pointer)(ptr)) == nil {
//pointer to null, we have to allocate memory to hold the value
newPtr := decoder.valueType.UnsafeNew()
decoder.valueDecoder.Decode(newPtr, iter)
*((*unsafe.Pointer)(ptr)) = newPtr
} else {
//reuse existing instance
decoder.valueDecoder.Decode(*((*unsafe.Pointer)(ptr)), iter)
}
}
type OptionalEncoder struct {
ValueEncoder ValEncoder
}
func (encoder *OptionalEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
if *((*unsafe.Pointer)(ptr)) == nil {
stream.WriteNil()
} else {
encoder.ValueEncoder.Encode(*((*unsafe.Pointer)(ptr)), stream)
}
}
func (encoder *OptionalEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return *((*unsafe.Pointer)(ptr)) == nil
}
type dereferenceEncoder struct {
ValueEncoder ValEncoder
}
func (encoder *dereferenceEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
if *((*unsafe.Pointer)(ptr)) == nil {
stream.WriteNil()
} else {
encoder.ValueEncoder.Encode(*((*unsafe.Pointer)(ptr)), stream)
}
}
func (encoder *dereferenceEncoder) IsEmpty(ptr unsafe.Pointer) bool {
dePtr := *((*unsafe.Pointer)(ptr))
if dePtr == nil {
return true
}
return encoder.ValueEncoder.IsEmpty(dePtr)
}
func (encoder *dereferenceEncoder) IsEmbeddedPtrNil(ptr unsafe.Pointer) bool {
deReferenced := *((*unsafe.Pointer)(ptr))
if deReferenced == nil {
return true
}
isEmbeddedPtrNil, converted := encoder.ValueEncoder.(IsEmbeddedPtrNil)
if !converted {
return false
}
fieldPtr := unsafe.Pointer(deReferenced)
return isEmbeddedPtrNil.IsEmbeddedPtrNil(fieldPtr)
}
type referenceEncoder struct {
encoder ValEncoder
}
func (encoder *referenceEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
encoder.encoder.Encode(unsafe.Pointer(&ptr), stream)
}
func (encoder *referenceEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return encoder.encoder.IsEmpty(unsafe.Pointer(&ptr))
}
type referenceDecoder struct {
decoder ValDecoder
}
func (decoder *referenceDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
decoder.decoder.Decode(unsafe.Pointer(&ptr), iter)
}

99
vendor/github.com/json-iterator/go/reflect_slice.go generated vendored Normal file
View File

@ -0,0 +1,99 @@
package jsoniter
import (
"fmt"
"github.com/modern-go/reflect2"
"io"
"unsafe"
)
func decoderOfSlice(ctx *ctx, typ reflect2.Type) ValDecoder {
sliceType := typ.(*reflect2.UnsafeSliceType)
decoder := decoderOfType(ctx.append("[sliceElem]"), sliceType.Elem())
return &sliceDecoder{sliceType, decoder}
}
func encoderOfSlice(ctx *ctx, typ reflect2.Type) ValEncoder {
sliceType := typ.(*reflect2.UnsafeSliceType)
encoder := encoderOfType(ctx.append("[sliceElem]"), sliceType.Elem())
return &sliceEncoder{sliceType, encoder}
}
type sliceEncoder struct {
sliceType *reflect2.UnsafeSliceType
elemEncoder ValEncoder
}
func (encoder *sliceEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
if encoder.sliceType.UnsafeIsNil(ptr) {
stream.WriteNil()
return
}
length := encoder.sliceType.UnsafeLengthOf(ptr)
if length == 0 {
stream.WriteEmptyArray()
return
}
stream.WriteArrayStart()
encoder.elemEncoder.Encode(encoder.sliceType.UnsafeGetIndex(ptr, 0), stream)
for i := 1; i < length; i++ {
stream.WriteMore()
elemPtr := encoder.sliceType.UnsafeGetIndex(ptr, i)
encoder.elemEncoder.Encode(elemPtr, stream)
}
stream.WriteArrayEnd()
if stream.Error != nil && stream.Error != io.EOF {
stream.Error = fmt.Errorf("%v: %s", encoder.sliceType, stream.Error.Error())
}
}
func (encoder *sliceEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return encoder.sliceType.UnsafeLengthOf(ptr) == 0
}
type sliceDecoder struct {
sliceType *reflect2.UnsafeSliceType
elemDecoder ValDecoder
}
func (decoder *sliceDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
decoder.doDecode(ptr, iter)
if iter.Error != nil && iter.Error != io.EOF {
iter.Error = fmt.Errorf("%v: %s", decoder.sliceType, iter.Error.Error())
}
}
func (decoder *sliceDecoder) doDecode(ptr unsafe.Pointer, iter *Iterator) {
c := iter.nextToken()
sliceType := decoder.sliceType
if c == 'n' {
iter.skipThreeBytes('u', 'l', 'l')
sliceType.UnsafeSetNil(ptr)
return
}
if c != '[' {
iter.ReportError("decode slice", "expect [ or n, but found "+string([]byte{c}))
return
}
c = iter.nextToken()
if c == ']' {
sliceType.UnsafeSet(ptr, sliceType.UnsafeMakeSlice(0, 0))
return
}
iter.unreadByte()
sliceType.UnsafeGrow(ptr, 1)
elemPtr := sliceType.UnsafeGetIndex(ptr, 0)
decoder.elemDecoder.Decode(elemPtr, iter)
length := 1
for c = iter.nextToken(); c == ','; c = iter.nextToken() {
idx := length
length += 1
sliceType.UnsafeGrow(ptr, length)
elemPtr = sliceType.UnsafeGetIndex(ptr, idx)
decoder.elemDecoder.Decode(elemPtr, iter)
}
if c != ']' {
iter.ReportError("decode slice", "expect ], but found "+string([]byte{c}))
return
}
}

View File

@ -3,38 +3,78 @@ package jsoniter
import (
"fmt"
"io"
"reflect"
"strings"
"unsafe"
"github.com/modern-go/reflect2"
)
func createStructDecoder(typ reflect.Type, fields map[string]*structFieldDecoder) (ValDecoder, error) {
knownHash := map[int32]struct{}{
func decoderOfStruct(ctx *ctx, typ reflect2.Type) ValDecoder {
bindings := map[string]*Binding{}
structDescriptor := describeStruct(ctx, typ)
for _, binding := range structDescriptor.Fields {
for _, fromName := range binding.FromNames {
old := bindings[fromName]
if old == nil {
bindings[fromName] = binding
continue
}
ignoreOld, ignoreNew := resolveConflictBinding(ctx.frozenConfig, old, binding)
if ignoreOld {
delete(bindings, fromName)
}
if !ignoreNew {
bindings[fromName] = binding
}
}
}
fields := map[string]*structFieldDecoder{}
for k, binding := range bindings {
fields[k] = binding.Decoder.(*structFieldDecoder)
}
if !ctx.caseSensitive() {
for k, binding := range bindings {
if _, found := fields[strings.ToLower(k)]; !found {
fields[strings.ToLower(k)] = binding.Decoder.(*structFieldDecoder)
}
}
}
return createStructDecoder(ctx, typ, fields)
}
func createStructDecoder(ctx *ctx, typ reflect2.Type, fields map[string]*structFieldDecoder) ValDecoder {
if ctx.disallowUnknownFields {
return &generalStructDecoder{typ: typ, fields: fields, disallowUnknownFields: true}
}
knownHash := map[int64]struct{}{
0: {},
}
switch len(fields) {
case 0:
return &skipObjectDecoder{typ}, nil
return &skipObjectDecoder{typ}
case 1:
for fieldName, fieldDecoder := range fields {
fieldHash := calcHash(fieldName)
fieldHash := calcHash(fieldName, ctx.caseSensitive())
_, known := knownHash[fieldHash]
if known {
return &generalStructDecoder{typ, fields}, nil
return &generalStructDecoder{typ, fields, false}
}
knownHash[fieldHash] = struct{}{}
return &oneFieldStructDecoder{typ, fieldHash, fieldDecoder}, nil
return &oneFieldStructDecoder{typ, fieldHash, fieldDecoder}
}
case 2:
var fieldHash1 int32
var fieldHash2 int32
var fieldHash1 int64
var fieldHash2 int64
var fieldDecoder1 *structFieldDecoder
var fieldDecoder2 *structFieldDecoder
for fieldName, fieldDecoder := range fields {
fieldHash := calcHash(fieldName)
fieldHash := calcHash(fieldName, ctx.caseSensitive())
_, known := knownHash[fieldHash]
if known {
return &generalStructDecoder{typ, fields}, nil
return &generalStructDecoder{typ, fields, false}
}
knownHash[fieldHash] = struct{}{}
if fieldHash1 == 0 {
@ -45,19 +85,19 @@ func createStructDecoder(typ reflect.Type, fields map[string]*structFieldDecoder
fieldDecoder2 = fieldDecoder
}
}
return &twoFieldsStructDecoder{typ, fieldHash1, fieldDecoder1, fieldHash2, fieldDecoder2}, nil
return &twoFieldsStructDecoder{typ, fieldHash1, fieldDecoder1, fieldHash2, fieldDecoder2}
case 3:
var fieldName1 int32
var fieldName2 int32
var fieldName3 int32
var fieldName1 int64
var fieldName2 int64
var fieldName3 int64
var fieldDecoder1 *structFieldDecoder
var fieldDecoder2 *structFieldDecoder
var fieldDecoder3 *structFieldDecoder
for fieldName, fieldDecoder := range fields {
fieldHash := calcHash(fieldName)
fieldHash := calcHash(fieldName, ctx.caseSensitive())
_, known := knownHash[fieldHash]
if known {
return &generalStructDecoder{typ, fields}, nil
return &generalStructDecoder{typ, fields, false}
}
knownHash[fieldHash] = struct{}{}
if fieldName1 == 0 {
@ -72,21 +112,23 @@ func createStructDecoder(typ reflect.Type, fields map[string]*structFieldDecoder
}
}
return &threeFieldsStructDecoder{typ,
fieldName1, fieldDecoder1, fieldName2, fieldDecoder2, fieldName3, fieldDecoder3}, nil
fieldName1, fieldDecoder1,
fieldName2, fieldDecoder2,
fieldName3, fieldDecoder3}
case 4:
var fieldName1 int32
var fieldName2 int32
var fieldName3 int32
var fieldName4 int32
var fieldName1 int64
var fieldName2 int64
var fieldName3 int64
var fieldName4 int64
var fieldDecoder1 *structFieldDecoder
var fieldDecoder2 *structFieldDecoder
var fieldDecoder3 *structFieldDecoder
var fieldDecoder4 *structFieldDecoder
for fieldName, fieldDecoder := range fields {
fieldHash := calcHash(fieldName)
fieldHash := calcHash(fieldName, ctx.caseSensitive())
_, known := knownHash[fieldHash]
if known {
return &generalStructDecoder{typ, fields}, nil
return &generalStructDecoder{typ, fields, false}
}
knownHash[fieldHash] = struct{}{}
if fieldName1 == 0 {
@ -104,24 +146,26 @@ func createStructDecoder(typ reflect.Type, fields map[string]*structFieldDecoder
}
}
return &fourFieldsStructDecoder{typ,
fieldName1, fieldDecoder1, fieldName2, fieldDecoder2, fieldName3, fieldDecoder3,
fieldName4, fieldDecoder4}, nil
fieldName1, fieldDecoder1,
fieldName2, fieldDecoder2,
fieldName3, fieldDecoder3,
fieldName4, fieldDecoder4}
case 5:
var fieldName1 int32
var fieldName2 int32
var fieldName3 int32
var fieldName4 int32
var fieldName5 int32
var fieldName1 int64
var fieldName2 int64
var fieldName3 int64
var fieldName4 int64
var fieldName5 int64
var fieldDecoder1 *structFieldDecoder
var fieldDecoder2 *structFieldDecoder
var fieldDecoder3 *structFieldDecoder
var fieldDecoder4 *structFieldDecoder
var fieldDecoder5 *structFieldDecoder
for fieldName, fieldDecoder := range fields {
fieldHash := calcHash(fieldName)
fieldHash := calcHash(fieldName, ctx.caseSensitive())
_, known := knownHash[fieldHash]
if known {
return &generalStructDecoder{typ, fields}, nil
return &generalStructDecoder{typ, fields, false}
}
knownHash[fieldHash] = struct{}{}
if fieldName1 == 0 {
@ -142,15 +186,18 @@ func createStructDecoder(typ reflect.Type, fields map[string]*structFieldDecoder
}
}
return &fiveFieldsStructDecoder{typ,
fieldName1, fieldDecoder1, fieldName2, fieldDecoder2, fieldName3, fieldDecoder3,
fieldName4, fieldDecoder4, fieldName5, fieldDecoder5}, nil
fieldName1, fieldDecoder1,
fieldName2, fieldDecoder2,
fieldName3, fieldDecoder3,
fieldName4, fieldDecoder4,
fieldName5, fieldDecoder5}
case 6:
var fieldName1 int32
var fieldName2 int32
var fieldName3 int32
var fieldName4 int32
var fieldName5 int32
var fieldName6 int32
var fieldName1 int64
var fieldName2 int64
var fieldName3 int64
var fieldName4 int64
var fieldName5 int64
var fieldName6 int64
var fieldDecoder1 *structFieldDecoder
var fieldDecoder2 *structFieldDecoder
var fieldDecoder3 *structFieldDecoder
@ -158,10 +205,10 @@ func createStructDecoder(typ reflect.Type, fields map[string]*structFieldDecoder
var fieldDecoder5 *structFieldDecoder
var fieldDecoder6 *structFieldDecoder
for fieldName, fieldDecoder := range fields {
fieldHash := calcHash(fieldName)
fieldHash := calcHash(fieldName, ctx.caseSensitive())
_, known := knownHash[fieldHash]
if known {
return &generalStructDecoder{typ, fields}, nil
return &generalStructDecoder{typ, fields, false}
}
knownHash[fieldHash] = struct{}{}
if fieldName1 == 0 {
@ -185,16 +232,20 @@ func createStructDecoder(typ reflect.Type, fields map[string]*structFieldDecoder
}
}
return &sixFieldsStructDecoder{typ,
fieldName1, fieldDecoder1, fieldName2, fieldDecoder2, fieldName3, fieldDecoder3,
fieldName4, fieldDecoder4, fieldName5, fieldDecoder5, fieldName6, fieldDecoder6}, nil
fieldName1, fieldDecoder1,
fieldName2, fieldDecoder2,
fieldName3, fieldDecoder3,
fieldName4, fieldDecoder4,
fieldName5, fieldDecoder5,
fieldName6, fieldDecoder6}
case 7:
var fieldName1 int32
var fieldName2 int32
var fieldName3 int32
var fieldName4 int32
var fieldName5 int32
var fieldName6 int32
var fieldName7 int32
var fieldName1 int64
var fieldName2 int64
var fieldName3 int64
var fieldName4 int64
var fieldName5 int64
var fieldName6 int64
var fieldName7 int64
var fieldDecoder1 *structFieldDecoder
var fieldDecoder2 *structFieldDecoder
var fieldDecoder3 *structFieldDecoder
@ -203,10 +254,10 @@ func createStructDecoder(typ reflect.Type, fields map[string]*structFieldDecoder
var fieldDecoder6 *structFieldDecoder
var fieldDecoder7 *structFieldDecoder
for fieldName, fieldDecoder := range fields {
fieldHash := calcHash(fieldName)
fieldHash := calcHash(fieldName, ctx.caseSensitive())
_, known := knownHash[fieldHash]
if known {
return &generalStructDecoder{typ, fields}, nil
return &generalStructDecoder{typ, fields, false}
}
knownHash[fieldHash] = struct{}{}
if fieldName1 == 0 {
@ -233,18 +284,22 @@ func createStructDecoder(typ reflect.Type, fields map[string]*structFieldDecoder
}
}
return &sevenFieldsStructDecoder{typ,
fieldName1, fieldDecoder1, fieldName2, fieldDecoder2, fieldName3, fieldDecoder3,
fieldName4, fieldDecoder4, fieldName5, fieldDecoder5, fieldName6, fieldDecoder6,
fieldName7, fieldDecoder7}, nil
fieldName1, fieldDecoder1,
fieldName2, fieldDecoder2,
fieldName3, fieldDecoder3,
fieldName4, fieldDecoder4,
fieldName5, fieldDecoder5,
fieldName6, fieldDecoder6,
fieldName7, fieldDecoder7}
case 8:
var fieldName1 int32
var fieldName2 int32
var fieldName3 int32
var fieldName4 int32
var fieldName5 int32
var fieldName6 int32
var fieldName7 int32
var fieldName8 int32
var fieldName1 int64
var fieldName2 int64
var fieldName3 int64
var fieldName4 int64
var fieldName5 int64
var fieldName6 int64
var fieldName7 int64
var fieldName8 int64
var fieldDecoder1 *structFieldDecoder
var fieldDecoder2 *structFieldDecoder
var fieldDecoder3 *structFieldDecoder
@ -254,10 +309,10 @@ func createStructDecoder(typ reflect.Type, fields map[string]*structFieldDecoder
var fieldDecoder7 *structFieldDecoder
var fieldDecoder8 *structFieldDecoder
for fieldName, fieldDecoder := range fields {
fieldHash := calcHash(fieldName)
fieldHash := calcHash(fieldName, ctx.caseSensitive())
_, known := knownHash[fieldHash]
if known {
return &generalStructDecoder{typ, fields}, nil
return &generalStructDecoder{typ, fields, false}
}
knownHash[fieldHash] = struct{}{}
if fieldName1 == 0 {
@ -287,19 +342,24 @@ func createStructDecoder(typ reflect.Type, fields map[string]*structFieldDecoder
}
}
return &eightFieldsStructDecoder{typ,
fieldName1, fieldDecoder1, fieldName2, fieldDecoder2, fieldName3, fieldDecoder3,
fieldName4, fieldDecoder4, fieldName5, fieldDecoder5, fieldName6, fieldDecoder6,
fieldName7, fieldDecoder7, fieldName8, fieldDecoder8}, nil
fieldName1, fieldDecoder1,
fieldName2, fieldDecoder2,
fieldName3, fieldDecoder3,
fieldName4, fieldDecoder4,
fieldName5, fieldDecoder5,
fieldName6, fieldDecoder6,
fieldName7, fieldDecoder7,
fieldName8, fieldDecoder8}
case 9:
var fieldName1 int32
var fieldName2 int32
var fieldName3 int32
var fieldName4 int32
var fieldName5 int32
var fieldName6 int32
var fieldName7 int32
var fieldName8 int32
var fieldName9 int32
var fieldName1 int64
var fieldName2 int64
var fieldName3 int64
var fieldName4 int64
var fieldName5 int64
var fieldName6 int64
var fieldName7 int64
var fieldName8 int64
var fieldName9 int64
var fieldDecoder1 *structFieldDecoder
var fieldDecoder2 *structFieldDecoder
var fieldDecoder3 *structFieldDecoder
@ -310,10 +370,10 @@ func createStructDecoder(typ reflect.Type, fields map[string]*structFieldDecoder
var fieldDecoder8 *structFieldDecoder
var fieldDecoder9 *structFieldDecoder
for fieldName, fieldDecoder := range fields {
fieldHash := calcHash(fieldName)
fieldHash := calcHash(fieldName, ctx.caseSensitive())
_, known := knownHash[fieldHash]
if known {
return &generalStructDecoder{typ, fields}, nil
return &generalStructDecoder{typ, fields, false}
}
knownHash[fieldHash] = struct{}{}
if fieldName1 == 0 {
@ -346,20 +406,26 @@ func createStructDecoder(typ reflect.Type, fields map[string]*structFieldDecoder
}
}
return &nineFieldsStructDecoder{typ,
fieldName1, fieldDecoder1, fieldName2, fieldDecoder2, fieldName3, fieldDecoder3,
fieldName4, fieldDecoder4, fieldName5, fieldDecoder5, fieldName6, fieldDecoder6,
fieldName7, fieldDecoder7, fieldName8, fieldDecoder8, fieldName9, fieldDecoder9}, nil
fieldName1, fieldDecoder1,
fieldName2, fieldDecoder2,
fieldName3, fieldDecoder3,
fieldName4, fieldDecoder4,
fieldName5, fieldDecoder5,
fieldName6, fieldDecoder6,
fieldName7, fieldDecoder7,
fieldName8, fieldDecoder8,
fieldName9, fieldDecoder9}
case 10:
var fieldName1 int32
var fieldName2 int32
var fieldName3 int32
var fieldName4 int32
var fieldName5 int32
var fieldName6 int32
var fieldName7 int32
var fieldName8 int32
var fieldName9 int32
var fieldName10 int32
var fieldName1 int64
var fieldName2 int64
var fieldName3 int64
var fieldName4 int64
var fieldName5 int64
var fieldName6 int64
var fieldName7 int64
var fieldName8 int64
var fieldName9 int64
var fieldName10 int64
var fieldDecoder1 *structFieldDecoder
var fieldDecoder2 *structFieldDecoder
var fieldDecoder3 *structFieldDecoder
@ -371,10 +437,10 @@ func createStructDecoder(typ reflect.Type, fields map[string]*structFieldDecoder
var fieldDecoder9 *structFieldDecoder
var fieldDecoder10 *structFieldDecoder
for fieldName, fieldDecoder := range fields {
fieldHash := calcHash(fieldName)
fieldHash := calcHash(fieldName, ctx.caseSensitive())
_, known := knownHash[fieldHash]
if known {
return &generalStructDecoder{typ, fields}, nil
return &generalStructDecoder{typ, fields, false}
}
knownHash[fieldHash] = struct{}{}
if fieldName1 == 0 {
@ -410,66 +476,80 @@ func createStructDecoder(typ reflect.Type, fields map[string]*structFieldDecoder
}
}
return &tenFieldsStructDecoder{typ,
fieldName1, fieldDecoder1, fieldName2, fieldDecoder2, fieldName3, fieldDecoder3,
fieldName4, fieldDecoder4, fieldName5, fieldDecoder5, fieldName6, fieldDecoder6,
fieldName7, fieldDecoder7, fieldName8, fieldDecoder8, fieldName9, fieldDecoder9,
fieldName10, fieldDecoder10}, nil
fieldName1, fieldDecoder1,
fieldName2, fieldDecoder2,
fieldName3, fieldDecoder3,
fieldName4, fieldDecoder4,
fieldName5, fieldDecoder5,
fieldName6, fieldDecoder6,
fieldName7, fieldDecoder7,
fieldName8, fieldDecoder8,
fieldName9, fieldDecoder9,
fieldName10, fieldDecoder10}
}
return &generalStructDecoder{typ, fields}, nil
return &generalStructDecoder{typ, fields, false}
}
type generalStructDecoder struct {
typ reflect.Type
fields map[string]*structFieldDecoder
typ reflect2.Type
fields map[string]*structFieldDecoder
disallowUnknownFields bool
}
func (decoder *generalStructDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
if !iter.readObjectStart() {
return
}
var fieldBytes []byte
var c byte
for c = ','; c == ','; c = iter.nextToken() {
decoder.decodeOneField(ptr, iter)
}
if iter.Error != nil && iter.Error != io.EOF {
iter.Error = fmt.Errorf("%v.%s", decoder.typ, iter.Error.Error())
}
if c != '}' {
iter.ReportError("struct Decode", `expect }, but found `+string([]byte{c}))
}
}
func (decoder *generalStructDecoder) decodeOneField(ptr unsafe.Pointer, iter *Iterator) {
var field string
var fieldDecoder *structFieldDecoder
if iter.cfg.objectFieldMustBeSimpleString {
fieldBytes = iter.readObjectFieldAsBytes()
fieldBytes := iter.ReadStringAsSlice()
field = *(*string)(unsafe.Pointer(&fieldBytes))
fieldDecoder = decoder.fields[field]
if fieldDecoder == nil && !iter.cfg.caseSensitive {
fieldDecoder = decoder.fields[strings.ToLower(field)]
}
} else {
field = iter.ReadString()
fieldDecoder = decoder.fields[field]
if fieldDecoder == nil && !iter.cfg.caseSensitive {
fieldDecoder = decoder.fields[strings.ToLower(field)]
}
}
if fieldDecoder == nil {
msg := "found unknown field: " + field
if decoder.disallowUnknownFields {
iter.ReportError("ReadObject", msg)
}
c := iter.nextToken()
if c != ':' {
iter.ReportError("ReadObject", "expect : after object field, but found "+string([]byte{c}))
}
}
fieldDecoder := decoder.fields[strings.ToLower(field)]
if fieldDecoder == nil {
iter.Skip()
} else {
fieldDecoder.Decode(ptr, iter)
return
}
for iter.nextToken() == ',' {
if iter.cfg.objectFieldMustBeSimpleString {
fieldBytes := iter.readObjectFieldAsBytes()
field = *(*string)(unsafe.Pointer(&fieldBytes))
} else {
field = iter.ReadString()
c := iter.nextToken()
if c != ':' {
iter.ReportError("ReadObject", "expect : after object field, but found "+string([]byte{c}))
}
}
fieldDecoder = decoder.fields[strings.ToLower(field)]
if fieldDecoder == nil {
iter.Skip()
} else {
fieldDecoder.Decode(ptr, iter)
}
}
if iter.Error != nil && iter.Error != io.EOF {
iter.Error = fmt.Errorf("%v: %s", decoder.typ, iter.Error.Error())
c := iter.nextToken()
if c != ':' {
iter.ReportError("ReadObject", "expect : after object field, but found "+string([]byte{c}))
}
fieldDecoder.Decode(ptr, iter)
}
type skipObjectDecoder struct {
typ reflect.Type
typ reflect2.Type
}
func (decoder *skipObjectDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
@ -482,8 +562,8 @@ func (decoder *skipObjectDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
}
type oneFieldStructDecoder struct {
typ reflect.Type
fieldHash int32
typ reflect2.Type
fieldHash int64
fieldDecoder *structFieldDecoder
}
@ -502,15 +582,15 @@ func (decoder *oneFieldStructDecoder) Decode(ptr unsafe.Pointer, iter *Iterator)
}
}
if iter.Error != nil && iter.Error != io.EOF {
iter.Error = fmt.Errorf("%v: %s", decoder.typ, iter.Error.Error())
iter.Error = fmt.Errorf("%v.%s", decoder.typ, iter.Error.Error())
}
}
type twoFieldsStructDecoder struct {
typ reflect.Type
fieldHash1 int32
typ reflect2.Type
fieldHash1 int64
fieldDecoder1 *structFieldDecoder
fieldHash2 int32
fieldHash2 int64
fieldDecoder2 *structFieldDecoder
}
@ -532,17 +612,17 @@ func (decoder *twoFieldsStructDecoder) Decode(ptr unsafe.Pointer, iter *Iterator
}
}
if iter.Error != nil && iter.Error != io.EOF {
iter.Error = fmt.Errorf("%v: %s", decoder.typ, iter.Error.Error())
iter.Error = fmt.Errorf("%v.%s", decoder.typ, iter.Error.Error())
}
}
type threeFieldsStructDecoder struct {
typ reflect.Type
fieldHash1 int32
typ reflect2.Type
fieldHash1 int64
fieldDecoder1 *structFieldDecoder
fieldHash2 int32
fieldHash2 int64
fieldDecoder2 *structFieldDecoder
fieldHash3 int32
fieldHash3 int64
fieldDecoder3 *structFieldDecoder
}
@ -566,19 +646,19 @@ func (decoder *threeFieldsStructDecoder) Decode(ptr unsafe.Pointer, iter *Iterat
}
}
if iter.Error != nil && iter.Error != io.EOF {
iter.Error = fmt.Errorf("%v: %s", decoder.typ, iter.Error.Error())
iter.Error = fmt.Errorf("%v.%s", decoder.typ, iter.Error.Error())
}
}
type fourFieldsStructDecoder struct {
typ reflect.Type
fieldHash1 int32
typ reflect2.Type
fieldHash1 int64
fieldDecoder1 *structFieldDecoder
fieldHash2 int32
fieldHash2 int64
fieldDecoder2 *structFieldDecoder
fieldHash3 int32
fieldHash3 int64
fieldDecoder3 *structFieldDecoder
fieldHash4 int32
fieldHash4 int64
fieldDecoder4 *structFieldDecoder
}
@ -604,21 +684,21 @@ func (decoder *fourFieldsStructDecoder) Decode(ptr unsafe.Pointer, iter *Iterato
}
}
if iter.Error != nil && iter.Error != io.EOF {
iter.Error = fmt.Errorf("%v: %s", decoder.typ, iter.Error.Error())
iter.Error = fmt.Errorf("%v.%s", decoder.typ, iter.Error.Error())
}
}
type fiveFieldsStructDecoder struct {
typ reflect.Type
fieldHash1 int32
typ reflect2.Type
fieldHash1 int64
fieldDecoder1 *structFieldDecoder
fieldHash2 int32
fieldHash2 int64
fieldDecoder2 *structFieldDecoder
fieldHash3 int32
fieldHash3 int64
fieldDecoder3 *structFieldDecoder
fieldHash4 int32
fieldHash4 int64
fieldDecoder4 *structFieldDecoder
fieldHash5 int32
fieldHash5 int64
fieldDecoder5 *structFieldDecoder
}
@ -646,23 +726,23 @@ func (decoder *fiveFieldsStructDecoder) Decode(ptr unsafe.Pointer, iter *Iterato
}
}
if iter.Error != nil && iter.Error != io.EOF {
iter.Error = fmt.Errorf("%v: %s", decoder.typ, iter.Error.Error())
iter.Error = fmt.Errorf("%v.%s", decoder.typ, iter.Error.Error())
}
}
type sixFieldsStructDecoder struct {
typ reflect.Type
fieldHash1 int32
typ reflect2.Type
fieldHash1 int64
fieldDecoder1 *structFieldDecoder
fieldHash2 int32
fieldHash2 int64
fieldDecoder2 *structFieldDecoder
fieldHash3 int32
fieldHash3 int64
fieldDecoder3 *structFieldDecoder
fieldHash4 int32
fieldHash4 int64
fieldDecoder4 *structFieldDecoder
fieldHash5 int32
fieldHash5 int64
fieldDecoder5 *structFieldDecoder
fieldHash6 int32
fieldHash6 int64
fieldDecoder6 *structFieldDecoder
}
@ -692,25 +772,25 @@ func (decoder *sixFieldsStructDecoder) Decode(ptr unsafe.Pointer, iter *Iterator
}
}
if iter.Error != nil && iter.Error != io.EOF {
iter.Error = fmt.Errorf("%v: %s", decoder.typ, iter.Error.Error())
iter.Error = fmt.Errorf("%v.%s", decoder.typ, iter.Error.Error())
}
}
type sevenFieldsStructDecoder struct {
typ reflect.Type
fieldHash1 int32
typ reflect2.Type
fieldHash1 int64
fieldDecoder1 *structFieldDecoder
fieldHash2 int32
fieldHash2 int64
fieldDecoder2 *structFieldDecoder
fieldHash3 int32
fieldHash3 int64
fieldDecoder3 *structFieldDecoder
fieldHash4 int32
fieldHash4 int64
fieldDecoder4 *structFieldDecoder
fieldHash5 int32
fieldHash5 int64
fieldDecoder5 *structFieldDecoder
fieldHash6 int32
fieldHash6 int64
fieldDecoder6 *structFieldDecoder
fieldHash7 int32
fieldHash7 int64
fieldDecoder7 *structFieldDecoder
}
@ -742,27 +822,27 @@ func (decoder *sevenFieldsStructDecoder) Decode(ptr unsafe.Pointer, iter *Iterat
}
}
if iter.Error != nil && iter.Error != io.EOF {
iter.Error = fmt.Errorf("%v: %s", decoder.typ, iter.Error.Error())
iter.Error = fmt.Errorf("%v.%s", decoder.typ, iter.Error.Error())
}
}
type eightFieldsStructDecoder struct {
typ reflect.Type
fieldHash1 int32
typ reflect2.Type
fieldHash1 int64
fieldDecoder1 *structFieldDecoder
fieldHash2 int32
fieldHash2 int64
fieldDecoder2 *structFieldDecoder
fieldHash3 int32
fieldHash3 int64
fieldDecoder3 *structFieldDecoder
fieldHash4 int32
fieldHash4 int64
fieldDecoder4 *structFieldDecoder
fieldHash5 int32
fieldHash5 int64
fieldDecoder5 *structFieldDecoder
fieldHash6 int32
fieldHash6 int64
fieldDecoder6 *structFieldDecoder
fieldHash7 int32
fieldHash7 int64
fieldDecoder7 *structFieldDecoder
fieldHash8 int32
fieldHash8 int64
fieldDecoder8 *structFieldDecoder
}
@ -796,29 +876,29 @@ func (decoder *eightFieldsStructDecoder) Decode(ptr unsafe.Pointer, iter *Iterat
}
}
if iter.Error != nil && iter.Error != io.EOF {
iter.Error = fmt.Errorf("%v: %s", decoder.typ, iter.Error.Error())
iter.Error = fmt.Errorf("%v.%s", decoder.typ, iter.Error.Error())
}
}
type nineFieldsStructDecoder struct {
typ reflect.Type
fieldHash1 int32
typ reflect2.Type
fieldHash1 int64
fieldDecoder1 *structFieldDecoder
fieldHash2 int32
fieldHash2 int64
fieldDecoder2 *structFieldDecoder
fieldHash3 int32
fieldHash3 int64
fieldDecoder3 *structFieldDecoder
fieldHash4 int32
fieldHash4 int64
fieldDecoder4 *structFieldDecoder
fieldHash5 int32
fieldHash5 int64
fieldDecoder5 *structFieldDecoder
fieldHash6 int32
fieldHash6 int64
fieldDecoder6 *structFieldDecoder
fieldHash7 int32
fieldHash7 int64
fieldDecoder7 *structFieldDecoder
fieldHash8 int32
fieldHash8 int64
fieldDecoder8 *structFieldDecoder
fieldHash9 int32
fieldHash9 int64
fieldDecoder9 *structFieldDecoder
}
@ -854,31 +934,31 @@ func (decoder *nineFieldsStructDecoder) Decode(ptr unsafe.Pointer, iter *Iterato
}
}
if iter.Error != nil && iter.Error != io.EOF {
iter.Error = fmt.Errorf("%v: %s", decoder.typ, iter.Error.Error())
iter.Error = fmt.Errorf("%v.%s", decoder.typ, iter.Error.Error())
}
}
type tenFieldsStructDecoder struct {
typ reflect.Type
fieldHash1 int32
typ reflect2.Type
fieldHash1 int64
fieldDecoder1 *structFieldDecoder
fieldHash2 int32
fieldHash2 int64
fieldDecoder2 *structFieldDecoder
fieldHash3 int32
fieldHash3 int64
fieldDecoder3 *structFieldDecoder
fieldHash4 int32
fieldHash4 int64
fieldDecoder4 *structFieldDecoder
fieldHash5 int32
fieldHash5 int64
fieldDecoder5 *structFieldDecoder
fieldHash6 int32
fieldHash6 int64
fieldDecoder6 *structFieldDecoder
fieldHash7 int32
fieldHash7 int64
fieldDecoder7 *structFieldDecoder
fieldHash8 int32
fieldHash8 int64
fieldDecoder8 *structFieldDecoder
fieldHash9 int32
fieldHash9 int64
fieldDecoder9 *structFieldDecoder
fieldHash10 int32
fieldHash10 int64
fieldDecoder10 *structFieldDecoder
}
@ -916,19 +996,53 @@ func (decoder *tenFieldsStructDecoder) Decode(ptr unsafe.Pointer, iter *Iterator
}
}
if iter.Error != nil && iter.Error != io.EOF {
iter.Error = fmt.Errorf("%v: %s", decoder.typ, iter.Error.Error())
iter.Error = fmt.Errorf("%v.%s", decoder.typ, iter.Error.Error())
}
}
type structFieldDecoder struct {
field *reflect.StructField
field reflect2.StructField
fieldDecoder ValDecoder
}
func (decoder *structFieldDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
fieldPtr := unsafe.Pointer(uintptr(ptr) + decoder.field.Offset)
fieldPtr := decoder.field.UnsafeGet(ptr)
decoder.fieldDecoder.Decode(fieldPtr, iter)
if iter.Error != nil && iter.Error != io.EOF {
iter.Error = fmt.Errorf("%s: %s", decoder.field.Name, iter.Error.Error())
iter.Error = fmt.Errorf("%s: %s", decoder.field.Name(), iter.Error.Error())
}
}
type stringModeStringDecoder struct {
elemDecoder ValDecoder
cfg *frozenConfig
}
func (decoder *stringModeStringDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
decoder.elemDecoder.Decode(ptr, iter)
str := *((*string)(ptr))
tempIter := decoder.cfg.BorrowIterator([]byte(str))
defer decoder.cfg.ReturnIterator(tempIter)
*((*string)(ptr)) = tempIter.ReadString()
}
type stringModeNumberDecoder struct {
elemDecoder ValDecoder
}
func (decoder *stringModeNumberDecoder) Decode(ptr unsafe.Pointer, iter *Iterator) {
c := iter.nextToken()
if c != '"' {
iter.ReportError("stringModeNumberDecoder", `expect ", but found `+string([]byte{c}))
return
}
decoder.elemDecoder.Decode(ptr, iter)
if iter.Error != nil {
return
}
c = iter.readByte()
if c != '"' {
iter.ReportError("stringModeNumberDecoder", `expect ", but found `+string([]byte{c}))
return
}
}

View File

@ -2,23 +2,20 @@ package jsoniter
import (
"fmt"
"github.com/modern-go/reflect2"
"io"
"reflect"
"strings"
"unsafe"
)
func encoderOfStruct(cfg *frozenConfig, typ reflect.Type) (ValEncoder, error) {
func encoderOfStruct(ctx *ctx, typ reflect2.Type) ValEncoder {
type bindingTo struct {
binding *Binding
toName string
ignored bool
}
orderedBindings := []*bindingTo{}
structDescriptor, err := describeStruct(cfg, typ)
if err != nil {
return nil, err
}
structDescriptor := describeStruct(ctx, typ)
for _, binding := range structDescriptor.Fields {
for _, toName := range binding.ToNames {
new := &bindingTo{
@ -29,13 +26,13 @@ func encoderOfStruct(cfg *frozenConfig, typ reflect.Type) (ValEncoder, error) {
if old.toName != toName {
continue
}
old.ignored, new.ignored = resolveConflictBinding(cfg, old.binding, new.binding)
old.ignored, new.ignored = resolveConflictBinding(ctx.frozenConfig, old.binding, new.binding)
}
orderedBindings = append(orderedBindings, new)
}
}
if len(orderedBindings) == 0 {
return &emptyStructEncoder{}, nil
return &emptyStructEncoder{}
}
finalOrderedFields := []structFieldTo{}
for _, bindingTo := range orderedBindings {
@ -46,12 +43,36 @@ func encoderOfStruct(cfg *frozenConfig, typ reflect.Type) (ValEncoder, error) {
})
}
}
return &structEncoder{structDescriptor.onePtrEmbedded, structDescriptor.onePtrOptimization, finalOrderedFields}, nil
return &structEncoder{typ, finalOrderedFields}
}
func createCheckIsEmpty(ctx *ctx, typ reflect2.Type) checkIsEmpty {
encoder := createEncoderOfNative(ctx, typ)
if encoder != nil {
return encoder
}
kind := typ.Kind()
switch kind {
case reflect.Interface:
return &dynamicEncoder{typ}
case reflect.Struct:
return &structEncoder{typ: typ}
case reflect.Array:
return &arrayEncoder{}
case reflect.Slice:
return &sliceEncoder{}
case reflect.Map:
return encoderOfMap(ctx, typ)
case reflect.Ptr:
return &OptionalEncoder{}
default:
return &lazyErrorEncoder{err: fmt.Errorf("unsupported type: %v", typ)}
}
}
func resolveConflictBinding(cfg *frozenConfig, old, new *Binding) (ignoreOld, ignoreNew bool) {
newTagged := new.Field.Tag.Get(cfg.getTagKey()) != ""
oldTagged := old.Field.Tag.Get(cfg.getTagKey()) != ""
newTagged := new.Field.Tag().Get(cfg.getTagKey()) != ""
oldTagged := old.Field.Tag().Get(cfg.getTagKey()) != ""
if newTagged {
if oldTagged {
if len(old.levels) > len(new.levels) {
@ -78,62 +99,41 @@ func resolveConflictBinding(cfg *frozenConfig, old, new *Binding) (ignoreOld, ig
}
}
func decoderOfStruct(cfg *frozenConfig, typ reflect.Type) (ValDecoder, error) {
bindings := map[string]*Binding{}
structDescriptor, err := describeStruct(cfg, typ)
if err != nil {
return nil, err
}
for _, binding := range structDescriptor.Fields {
for _, fromName := range binding.FromNames {
old := bindings[fromName]
if old == nil {
bindings[fromName] = binding
continue
}
ignoreOld, ignoreNew := resolveConflictBinding(cfg, old, binding)
if ignoreOld {
delete(bindings, fromName)
}
if !ignoreNew {
bindings[fromName] = binding
}
}
}
fields := map[string]*structFieldDecoder{}
for k, binding := range bindings {
fields[strings.ToLower(k)] = binding.Decoder.(*structFieldDecoder)
}
return createStructDecoder(typ, fields)
}
type structFieldEncoder struct {
field *reflect.StructField
field reflect2.StructField
fieldEncoder ValEncoder
omitempty bool
}
func (encoder *structFieldEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
fieldPtr := unsafe.Pointer(uintptr(ptr) + encoder.field.Offset)
fieldPtr := encoder.field.UnsafeGet(ptr)
encoder.fieldEncoder.Encode(fieldPtr, stream)
if stream.Error != nil && stream.Error != io.EOF {
stream.Error = fmt.Errorf("%s: %s", encoder.field.Name, stream.Error.Error())
stream.Error = fmt.Errorf("%s: %s", encoder.field.Name(), stream.Error.Error())
}
}
func (encoder *structFieldEncoder) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, encoder)
}
func (encoder *structFieldEncoder) IsEmpty(ptr unsafe.Pointer) bool {
fieldPtr := unsafe.Pointer(uintptr(ptr) + encoder.field.Offset)
fieldPtr := encoder.field.UnsafeGet(ptr)
return encoder.fieldEncoder.IsEmpty(fieldPtr)
}
func (encoder *structFieldEncoder) IsEmbeddedPtrNil(ptr unsafe.Pointer) bool {
isEmbeddedPtrNil, converted := encoder.fieldEncoder.(IsEmbeddedPtrNil)
if !converted {
return false
}
fieldPtr := encoder.field.UnsafeGet(ptr)
return isEmbeddedPtrNil.IsEmbeddedPtrNil(fieldPtr)
}
type IsEmbeddedPtrNil interface {
IsEmbeddedPtrNil(ptr unsafe.Pointer) bool
}
type structEncoder struct {
onePtrEmbedded bool
onePtrOptimization bool
fields []structFieldTo
typ reflect2.Type
fields []structFieldTo
}
type structFieldTo struct {
@ -148,6 +148,9 @@ func (encoder *structEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
if field.encoder.omitempty && field.encoder.IsEmpty(ptr) {
continue
}
if field.encoder.IsEmbeddedPtrNil(ptr) {
continue
}
if isNotFirst {
stream.WriteMore()
}
@ -156,23 +159,8 @@ func (encoder *structEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
isNotFirst = true
}
stream.WriteObjectEnd()
}
func (encoder *structEncoder) EncodeInterface(val interface{}, stream *Stream) {
e := (*emptyInterface)(unsafe.Pointer(&val))
if encoder.onePtrOptimization {
if e.word == nil && encoder.onePtrEmbedded {
stream.WriteObjectStart()
stream.WriteObjectEnd()
return
}
ptr := uintptr(e.word)
e.word = unsafe.Pointer(&ptr)
}
if reflect.TypeOf(val).Kind() == reflect.Ptr {
encoder.Encode(unsafe.Pointer(&e.word), stream)
} else {
encoder.Encode(e.word, stream)
if stream.Error != nil && stream.Error != io.EOF {
stream.Error = fmt.Errorf("%v.%s", encoder.typ, stream.Error.Error())
}
}
@ -187,10 +175,36 @@ func (encoder *emptyStructEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.WriteEmptyObject()
}
func (encoder *emptyStructEncoder) EncodeInterface(val interface{}, stream *Stream) {
WriteToStream(val, stream, encoder)
}
func (encoder *emptyStructEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return false
}
type stringModeNumberEncoder struct {
elemEncoder ValEncoder
}
func (encoder *stringModeNumberEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
stream.writeByte('"')
encoder.elemEncoder.Encode(ptr, stream)
stream.writeByte('"')
}
func (encoder *stringModeNumberEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return encoder.elemEncoder.IsEmpty(ptr)
}
type stringModeStringEncoder struct {
elemEncoder ValEncoder
cfg *frozenConfig
}
func (encoder *stringModeStringEncoder) Encode(ptr unsafe.Pointer, stream *Stream) {
tempStream := encoder.cfg.BorrowStream(nil)
defer encoder.cfg.ReturnStream(tempStream)
encoder.elemEncoder.Encode(ptr, tempStream)
stream.WriteString(string(tempStream.Buffer()))
}
func (encoder *stringModeStringEncoder) IsEmpty(ptr unsafe.Pointer) bool {
return encoder.elemEncoder.IsEmpty(ptr)
}

View File

@ -10,7 +10,6 @@ type Stream struct {
cfg *frozenConfig
out io.Writer
buf []byte
n int
Error error
indention int
Attachment interface{} // open for customized encoder
@ -24,8 +23,7 @@ func NewStream(cfg API, out io.Writer, bufSize int) *Stream {
return &Stream{
cfg: cfg.(*frozenConfig),
out: out,
buf: make([]byte, bufSize),
n: 0,
buf: make([]byte, 0, bufSize),
Error: nil,
indention: 0,
}
@ -39,22 +37,27 @@ func (stream *Stream) Pool() StreamPool {
// Reset reuse this stream instance by assign a new writer
func (stream *Stream) Reset(out io.Writer) {
stream.out = out
stream.n = 0
stream.buf = stream.buf[:0]
}
// Available returns how many bytes are unused in the buffer.
func (stream *Stream) Available() int {
return len(stream.buf) - stream.n
return cap(stream.buf) - len(stream.buf)
}
// Buffered returns the number of bytes that have been written into the current buffer.
func (stream *Stream) Buffered() int {
return stream.n
return len(stream.buf)
}
// Buffer if writer is nil, use this method to take the result
func (stream *Stream) Buffer() []byte {
return stream.buf[:stream.n]
return stream.buf
}
// SetBuffer allows to append to the internal buffer directly
func (stream *Stream) SetBuffer(buf []byte) {
stream.buf = buf
}
// Write writes the contents of p into the buffer.
@ -62,97 +65,34 @@ func (stream *Stream) Buffer() []byte {
// If nn < len(p), it also returns an error explaining
// why the write is short.
func (stream *Stream) Write(p []byte) (nn int, err error) {
for len(p) > stream.Available() && stream.Error == nil {
if stream.out == nil {
stream.growAtLeast(len(p))
} else {
var n int
if stream.Buffered() == 0 {
// Large write, empty buffer.
// Write directly from p to avoid copy.
n, stream.Error = stream.out.Write(p)
} else {
n = copy(stream.buf[stream.n:], p)
stream.n += n
stream.Flush()
}
nn += n
p = p[n:]
}
stream.buf = append(stream.buf, p...)
if stream.out != nil {
nn, err = stream.out.Write(stream.buf)
stream.buf = stream.buf[nn:]
return
}
if stream.Error != nil {
return nn, stream.Error
}
n := copy(stream.buf[stream.n:], p)
stream.n += n
nn += n
return nn, nil
return len(p), nil
}
// WriteByte writes a single byte.
func (stream *Stream) writeByte(c byte) {
if stream.Error != nil {
return
}
if stream.Available() < 1 {
stream.growAtLeast(1)
}
stream.buf[stream.n] = c
stream.n++
stream.buf = append(stream.buf, c)
}
func (stream *Stream) writeTwoBytes(c1 byte, c2 byte) {
if stream.Error != nil {
return
}
if stream.Available() < 2 {
stream.growAtLeast(2)
}
stream.buf[stream.n] = c1
stream.buf[stream.n+1] = c2
stream.n += 2
stream.buf = append(stream.buf, c1, c2)
}
func (stream *Stream) writeThreeBytes(c1 byte, c2 byte, c3 byte) {
if stream.Error != nil {
return
}
if stream.Available() < 3 {
stream.growAtLeast(3)
}
stream.buf[stream.n] = c1
stream.buf[stream.n+1] = c2
stream.buf[stream.n+2] = c3
stream.n += 3
stream.buf = append(stream.buf, c1, c2, c3)
}
func (stream *Stream) writeFourBytes(c1 byte, c2 byte, c3 byte, c4 byte) {
if stream.Error != nil {
return
}
if stream.Available() < 4 {
stream.growAtLeast(4)
}
stream.buf[stream.n] = c1
stream.buf[stream.n+1] = c2
stream.buf[stream.n+2] = c3
stream.buf[stream.n+3] = c4
stream.n += 4
stream.buf = append(stream.buf, c1, c2, c3, c4)
}
func (stream *Stream) writeFiveBytes(c1 byte, c2 byte, c3 byte, c4 byte, c5 byte) {
if stream.Error != nil {
return
}
if stream.Available() < 5 {
stream.growAtLeast(5)
}
stream.buf[stream.n] = c1
stream.buf[stream.n+1] = c2
stream.buf[stream.n+2] = c3
stream.buf[stream.n+3] = c4
stream.buf[stream.n+4] = c5
stream.n += 5
stream.buf = append(stream.buf, c1, c2, c3, c4, c5)
}
// Flush writes any buffered data to the underlying io.Writer.
@ -163,56 +103,20 @@ func (stream *Stream) Flush() error {
if stream.Error != nil {
return stream.Error
}
if stream.n == 0 {
return nil
}
n, err := stream.out.Write(stream.buf[0:stream.n])
if n < stream.n && err == nil {
err = io.ErrShortWrite
}
n, err := stream.out.Write(stream.buf)
if err != nil {
if n > 0 && n < stream.n {
copy(stream.buf[0:stream.n-n], stream.buf[n:stream.n])
if stream.Error == nil {
stream.Error = err
}
stream.n -= n
stream.Error = err
return err
}
stream.n = 0
stream.buf = stream.buf[n:]
return nil
}
func (stream *Stream) ensure(minimal int) {
available := stream.Available()
if available < minimal {
stream.growAtLeast(minimal)
}
}
func (stream *Stream) growAtLeast(minimal int) {
if stream.out != nil {
stream.Flush()
if stream.Available() >= minimal {
return
}
}
toGrow := len(stream.buf)
if toGrow < minimal {
toGrow = minimal
}
newBuf := make([]byte, len(stream.buf)+toGrow)
copy(newBuf, stream.Buffer())
stream.buf = newBuf
}
// WriteRaw write string out without quotes, just like []byte
func (stream *Stream) WriteRaw(s string) {
stream.ensure(len(s))
if stream.Error != nil {
return
}
n := copy(stream.buf[stream.n:], s)
stream.n += n
stream.buf = append(stream.buf, s...)
}
// WriteNil write null to stream
@ -273,6 +177,7 @@ func (stream *Stream) WriteEmptyObject() {
func (stream *Stream) WriteMore() {
stream.writeByte(',')
stream.writeIndention(0)
stream.Flush()
}
// WriteArrayStart write [ with possible indention
@ -300,9 +205,7 @@ func (stream *Stream) writeIndention(delta int) {
}
stream.writeByte('\n')
toWrite := stream.indention - delta
stream.ensure(toWrite)
for i := 0; i < toWrite && stream.n < len(stream.buf); i++ {
stream.buf[stream.n] = ' '
stream.n++
for i := 0; i < toWrite; i++ {
stream.buf = append(stream.buf, ' ')
}
}

View File

@ -21,7 +21,7 @@ func (stream *Stream) WriteFloat32(val float32) {
fmt = 'e'
}
}
stream.WriteRaw(strconv.FormatFloat(float64(val), fmt, -1, 32))
stream.buf = strconv.AppendFloat(stream.buf, float64(val), fmt, -1, 32)
}
// WriteFloat32Lossy write float32 to stream with ONLY 6 digits precision although much much faster
@ -43,13 +43,12 @@ func (stream *Stream) WriteFloat32Lossy(val float32) {
return
}
stream.writeByte('.')
stream.ensure(10)
for p := precision - 1; p > 0 && fval < pow10[p]; p-- {
stream.writeByte('0')
}
stream.WriteUint64(fval)
for stream.buf[stream.n-1] == '0' {
stream.n--
for stream.buf[len(stream.buf)-1] == '0' {
stream.buf = stream.buf[:len(stream.buf)-1]
}
}
@ -63,7 +62,7 @@ func (stream *Stream) WriteFloat64(val float64) {
fmt = 'e'
}
}
stream.WriteRaw(strconv.FormatFloat(float64(val), fmt, -1, 64))
stream.buf = strconv.AppendFloat(stream.buf, float64(val), fmt, -1, 64)
}
// WriteFloat64Lossy write float64 to stream with ONLY 6 digits precision although much much faster
@ -85,12 +84,11 @@ func (stream *Stream) WriteFloat64Lossy(val float64) {
return
}
stream.writeByte('.')
stream.ensure(10)
for p := precision - 1; p > 0 && fval < pow10[p]; p-- {
stream.writeByte('0')
}
stream.WriteUint64(fval)
for stream.buf[stream.n-1] == '0' {
stream.n--
for stream.buf[len(stream.buf)-1] == '0' {
stream.buf = stream.buf[:len(stream.buf)-1]
}
}

190
vendor/github.com/json-iterator/go/stream_int.go generated vendored Normal file
View File

@ -0,0 +1,190 @@
package jsoniter
var digits []uint32
func init() {
digits = make([]uint32, 1000)
for i := uint32(0); i < 1000; i++ {
digits[i] = (((i / 100) + '0') << 16) + ((((i / 10) % 10) + '0') << 8) + i%10 + '0'
if i < 10 {
digits[i] += 2 << 24
} else if i < 100 {
digits[i] += 1 << 24
}
}
}
func writeFirstBuf(space []byte, v uint32) []byte {
start := v >> 24
if start == 0 {
space = append(space, byte(v>>16), byte(v>>8))
} else if start == 1 {
space = append(space, byte(v>>8))
}
space = append(space, byte(v))
return space
}
func writeBuf(buf []byte, v uint32) []byte {
return append(buf, byte(v>>16), byte(v>>8), byte(v))
}
// WriteUint8 write uint8 to stream
func (stream *Stream) WriteUint8(val uint8) {
stream.buf = writeFirstBuf(stream.buf, digits[val])
}
// WriteInt8 write int8 to stream
func (stream *Stream) WriteInt8(nval int8) {
var val uint8
if nval < 0 {
val = uint8(-nval)
stream.buf = append(stream.buf, '-')
} else {
val = uint8(nval)
}
stream.buf = writeFirstBuf(stream.buf, digits[val])
}
// WriteUint16 write uint16 to stream
func (stream *Stream) WriteUint16(val uint16) {
q1 := val / 1000
if q1 == 0 {
stream.buf = writeFirstBuf(stream.buf, digits[val])
return
}
r1 := val - q1*1000
stream.buf = writeFirstBuf(stream.buf, digits[q1])
stream.buf = writeBuf(stream.buf, digits[r1])
return
}
// WriteInt16 write int16 to stream
func (stream *Stream) WriteInt16(nval int16) {
var val uint16
if nval < 0 {
val = uint16(-nval)
stream.buf = append(stream.buf, '-')
} else {
val = uint16(nval)
}
stream.WriteUint16(val)
}
// WriteUint32 write uint32 to stream
func (stream *Stream) WriteUint32(val uint32) {
q1 := val / 1000
if q1 == 0 {
stream.buf = writeFirstBuf(stream.buf, digits[val])
return
}
r1 := val - q1*1000
q2 := q1 / 1000
if q2 == 0 {
stream.buf = writeFirstBuf(stream.buf, digits[q1])
stream.buf = writeBuf(stream.buf, digits[r1])
return
}
r2 := q1 - q2*1000
q3 := q2 / 1000
if q3 == 0 {
stream.buf = writeFirstBuf(stream.buf, digits[q2])
} else {
r3 := q2 - q3*1000
stream.buf = append(stream.buf, byte(q3+'0'))
stream.buf = writeBuf(stream.buf, digits[r3])
}
stream.buf = writeBuf(stream.buf, digits[r2])
stream.buf = writeBuf(stream.buf, digits[r1])
}
// WriteInt32 write int32 to stream
func (stream *Stream) WriteInt32(nval int32) {
var val uint32
if nval < 0 {
val = uint32(-nval)
stream.buf = append(stream.buf, '-')
} else {
val = uint32(nval)
}
stream.WriteUint32(val)
}
// WriteUint64 write uint64 to stream
func (stream *Stream) WriteUint64(val uint64) {
q1 := val / 1000
if q1 == 0 {
stream.buf = writeFirstBuf(stream.buf, digits[val])
return
}
r1 := val - q1*1000
q2 := q1 / 1000
if q2 == 0 {
stream.buf = writeFirstBuf(stream.buf, digits[q1])
stream.buf = writeBuf(stream.buf, digits[r1])
return
}
r2 := q1 - q2*1000
q3 := q2 / 1000
if q3 == 0 {
stream.buf = writeFirstBuf(stream.buf, digits[q2])
stream.buf = writeBuf(stream.buf, digits[r2])
stream.buf = writeBuf(stream.buf, digits[r1])
return
}
r3 := q2 - q3*1000
q4 := q3 / 1000
if q4 == 0 {
stream.buf = writeFirstBuf(stream.buf, digits[q3])
stream.buf = writeBuf(stream.buf, digits[r3])
stream.buf = writeBuf(stream.buf, digits[r2])
stream.buf = writeBuf(stream.buf, digits[r1])
return
}
r4 := q3 - q4*1000
q5 := q4 / 1000
if q5 == 0 {
stream.buf = writeFirstBuf(stream.buf, digits[q4])
stream.buf = writeBuf(stream.buf, digits[r4])
stream.buf = writeBuf(stream.buf, digits[r3])
stream.buf = writeBuf(stream.buf, digits[r2])
stream.buf = writeBuf(stream.buf, digits[r1])
return
}
r5 := q4 - q5*1000
q6 := q5 / 1000
if q6 == 0 {
stream.buf = writeFirstBuf(stream.buf, digits[q5])
} else {
stream.buf = writeFirstBuf(stream.buf, digits[q6])
r6 := q5 - q6*1000
stream.buf = writeBuf(stream.buf, digits[r6])
}
stream.buf = writeBuf(stream.buf, digits[r5])
stream.buf = writeBuf(stream.buf, digits[r4])
stream.buf = writeBuf(stream.buf, digits[r3])
stream.buf = writeBuf(stream.buf, digits[r2])
stream.buf = writeBuf(stream.buf, digits[r1])
}
// WriteInt64 write int64 to stream
func (stream *Stream) WriteInt64(nval int64) {
var val uint64
if nval < 0 {
val = uint64(-nval)
stream.buf = append(stream.buf, '-')
} else {
val = uint64(nval)
}
stream.WriteUint64(val)
}
// WriteInt write int to stream
func (stream *Stream) WriteInt(val int) {
stream.WriteInt64(int64(val))
}
// WriteUint write uint to stream
func (stream *Stream) WriteUint(val uint) {
stream.WriteUint64(uint64(val))
}

View File

@ -219,34 +219,22 @@ var hex = "0123456789abcdef"
// WriteStringWithHTMLEscaped write string to stream with html special characters escaped
func (stream *Stream) WriteStringWithHTMLEscaped(s string) {
stream.ensure(32)
valLen := len(s)
toWriteLen := valLen
bufLengthMinusTwo := len(stream.buf) - 2 // make room for the quotes
if stream.n+toWriteLen > bufLengthMinusTwo {
toWriteLen = bufLengthMinusTwo - stream.n
}
n := stream.n
stream.buf[n] = '"'
n++
stream.buf = append(stream.buf, '"')
// write string, the fast path, without utf8 and escape support
i := 0
for ; i < toWriteLen; i++ {
for ; i < valLen; i++ {
c := s[i]
if c < utf8.RuneSelf && htmlSafeSet[c] {
stream.buf[n] = c
n++
stream.buf = append(stream.buf, c)
} else {
break
}
}
if i == valLen {
stream.buf[n] = '"'
n++
stream.n = n
stream.buf = append(stream.buf, '"')
return
}
stream.n = n
writeStringSlowPathWithHTMLEscaped(stream, i, s, valLen)
}
@ -321,34 +309,22 @@ func writeStringSlowPathWithHTMLEscaped(stream *Stream, i int, s string, valLen
// WriteString write string to stream without html escape
func (stream *Stream) WriteString(s string) {
stream.ensure(32)
valLen := len(s)
toWriteLen := valLen
bufLengthMinusTwo := len(stream.buf) - 2 // make room for the quotes
if stream.n+toWriteLen > bufLengthMinusTwo {
toWriteLen = bufLengthMinusTwo - stream.n
}
n := stream.n
stream.buf[n] = '"'
n++
stream.buf = append(stream.buf, '"')
// write string, the fast path, without utf8 and escape support
i := 0
for ; i < toWriteLen; i++ {
for ; i < valLen; i++ {
c := s[i]
if c > 31 && c != '"' && c != '\\' {
stream.buf[n] = c
n++
stream.buf = append(stream.buf, c)
} else {
break
}
}
if i == valLen {
stream.buf[n] = '"'
n++
stream.n = n
stream.buf = append(stream.buf, '"')
return
}
stream.n = n
writeStringSlowPath(stream, i, s, valLen)
}

View File

@ -4,7 +4,7 @@ set -e
echo "" > coverage.txt
for d in $(go list ./... | grep -v vendor); do
go test -coverprofile=profile.out $d
go test -coverprofile=profile.out -coverpkg=github.com/json-iterator/go $d
if [ -f profile.out ]; then
cat profile.out >> coverage.txt
rm profile.out

1
vendor/github.com/modern-go/concurrent/.gitignore generated vendored Normal file
View File

@ -0,0 +1 @@
/coverage.txt

14
vendor/github.com/modern-go/concurrent/.travis.yml generated vendored Normal file
View File

@ -0,0 +1,14 @@
language: go
go:
- 1.8.x
- 1.x
before_install:
- go get -t -v ./...
script:
- ./test.sh
after_success:
- bash <(curl -s https://codecov.io/bash)

201
vendor/github.com/modern-go/concurrent/LICENSE generated vendored Normal file
View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

49
vendor/github.com/modern-go/concurrent/README.md generated vendored Normal file
View File

@ -0,0 +1,49 @@
# concurrent
[![Sourcegraph](https://sourcegraph.com/github.com/modern-go/concurrent/-/badge.svg)](https://sourcegraph.com/github.com/modern-go/concurrent?badge)
[![GoDoc](http://img.shields.io/badge/go-documentation-blue.svg?style=flat-square)](http://godoc.org/github.com/modern-go/concurrent)
[![Build Status](https://travis-ci.org/modern-go/concurrent.svg?branch=master)](https://travis-ci.org/modern-go/concurrent)
[![codecov](https://codecov.io/gh/modern-go/concurrent/branch/master/graph/badge.svg)](https://codecov.io/gh/modern-go/concurrent)
[![rcard](https://goreportcard.com/badge/github.com/modern-go/concurrent)](https://goreportcard.com/report/github.com/modern-go/concurrent)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://raw.githubusercontent.com/modern-go/concurrent/master/LICENSE)
* concurrent.Map: backport sync.Map for go below 1.9
* concurrent.Executor: goroutine with explicit ownership and cancellable
# concurrent.Map
because sync.Map is only available in go 1.9, we can use concurrent.Map to make code portable
```go
m := concurrent.NewMap()
m.Store("hello", "world")
elem, found := m.Load("hello")
// elem will be "world"
// found will be true
```
# concurrent.Executor
```go
executor := concurrent.NewUnboundedExecutor()
executor.Go(func(ctx context.Context) {
everyMillisecond := time.NewTicker(time.Millisecond)
for {
select {
case <-ctx.Done():
fmt.Println("goroutine exited")
return
case <-everyMillisecond.C:
// do something
}
}
})
time.Sleep(time.Second)
executor.StopAndWaitForever()
fmt.Println("executor stopped")
```
attach goroutine to executor instance, so that we can
* cancel it by stop the executor with Stop/StopAndWait/StopAndWaitForever
* handle panic by callback: the default behavior will no longer crash your application

14
vendor/github.com/modern-go/concurrent/executor.go generated vendored Normal file
View File

@ -0,0 +1,14 @@
package concurrent
import "context"
// Executor replace go keyword to start a new goroutine
// the goroutine should cancel itself if the context passed in has been cancelled
// the goroutine started by the executor, is owned by the executor
// we can cancel all executors owned by the executor just by stop the executor itself
// however Executor interface does not Stop method, the one starting and owning executor
// should use the concrete type of executor, instead of this interface.
type Executor interface {
// Go starts a new goroutine controlled by the context
Go(handler func(ctx context.Context))
}

15
vendor/github.com/modern-go/concurrent/go_above_19.go generated vendored Normal file
View File

@ -0,0 +1,15 @@
//+build go1.9
package concurrent
import "sync"
// Map is a wrapper for sync.Map introduced in go1.9
type Map struct {
sync.Map
}
// NewMap creates a thread safe Map
func NewMap() *Map {
return &Map{}
}

Some files were not shown because too many files have changed in this diff Show More