mirror of https://github.com/dapr/dapr-agents.git
22 lines
6.2 KiB
Markdown
22 lines
6.2 KiB
Markdown
# Dapr Agents Quickstarts
|
|
|
|
[Quickstarts](https://github.com/dapr/dapr-agents/tree/main/quickstarts) demonstrate how to use Dapr Agents to build applications with LLM-powered autonomous agents and event-driven workflows. Each quickstart builds upon the previous one, introducing new concepts incrementally.
|
|
|
|
|
|
!!! info
|
|
Not all quickstarts require Docker, but it is recommended to have your [local Dapr environment set up](../installation.md) with Docker for the best development experience and to follow the steps in this guide seamlessly.
|
|
|
|
## Quickstarts
|
|
|
|
| Scenario | What You'll Learn |
|
|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| --- |
|
|
| [Hello World](https://github.com/dapr/dapr-agents/tree/main/quickstarts/01-hello-world)<br>A rapid introduction that demonstrates core Dapr Agents concepts through simple, practical examples. | - **Basic LLM Usage**: Simple text generation with OpenAI models <br> - **Creating Agents**: Building agents with custom tools in under 20 lines of code <br> - **ReAct Pattern**: Implementing reasoning and action cycles in agents <br> - **Simple Workflows**: Setting up multi-step LLM processes |
|
|
| [LLM Call with Dapr Chat Client](https://github.com/dapr/dapr-agents/tree/main/quickstarts/02_llm_call_dapr)<br>Explore interaction with Language Models through Dapr Agents' `DaprChatClient`, featuring basic text generation with plain text prompts and templates. | - **Text Completion**: Generating responses to prompts <br> - **Swapping LLM providers**: Switching LLM backends without application code change <br> - **Resilience**: Setting timeout, retry and circuit-breaking <br> - **PII Obfuscation**: Automatically detect and mask sensitive user information |
|
|
| [LLM Call with OpenAI Client](https://github.com/dapr/dapr-agents/tree/main/quickstarts/02_llm_call_open_ai)<br>Discover how to leverage native LLM client libraries with Dapr Agents using the OpenAI Client for chat completion, audio processing, and embeddings. | - **Text Completion**: Generating responses to prompts <br> - **Structured Outputs**: Converting LLM responses to Pydantic objects <br><br> *Note: Other quickstarts for specific clients are available for [Elevenlabs](https://github.com/dapr/dapr-agents/tree/main/quickstarts/02_llm_call_elevenlabs), [Hugging Face](https://github.com/dapr/dapr-agents/tree/main/quickstarts/02_llm_call_hugging_face), and [Nvidia](https://github.com/dapr/dapr-agents/tree/main/quickstarts/02_llm_call_nvidia).* |
|
|
| [Agent Tool Call](https://github.com/dapr/dapr-agents/tree/main/quickstarts/03-agent-tool-call)<br>Build your first AI agent with custom tools by creating a practical weather assistant that fetches information and performs actions. | - **Tool Definition**: Creating reusable tools with the `@tool` decorator <br> - **Agent Configuration**: Setting up agents with roles, goals, and tools <br> - **Function Calling**: Enabling LLMs to execute Python functions |
|
|
| [Agentic Workflow](https://github.com/dapr/dapr-agents/tree/main/quickstarts/04-agentic-workflow)<br>Dive into stateful workflows with Dapr Agents by orchestrating sequential and parallel tasks through powerful workflow capabilities. | - **LLM-powered Tasks**: Using language models in workflows <br> - **Task Chaining**: Creating resilient multi-step processes executing in sequence <br> - **Fan-out/Fan-in**: Executing activities in parallel; then synchronizing these activities until all preceding activities have completed |
|
|
| [Multi-Agent Workflows](https://github.com/dapr/dapr-agents/tree/main/quickstarts/05-multi-agent-workflow-dapr-workflows)<br>Explore advanced event-driven workflows featuring a Lord of the Rings themed multi-agent system where autonomous agents collaborate to solve problems. | - **Multi-agent Systems**: Creating a network of specialized agents <br> - **Event-driven Architecture**: Implementing pub/sub messaging between agents <br> - **Actor Model**: Using Dapr Actors for stateful agent management <br> - **Workflow Orchestration**: Coordinating agents through different selection strategies <br><br> *Note: To see Actor-based workflow see [Multi-Agent Actors](https://github.com/dapr/dapr-agents/tree/main/quickstarts/05-multi-agent-workflow-actors).* |
|
|
| [Multi-Agent Workflow on Kubernetes](https://github.com/dapr/dapr-agents/tree/main/quickstarts/07-k8s-multi-agent-workflow)<br>Run multi-agent workflows in Kubernetes, demonstrating deployment and orchestration of event-driven agent systems in a containerized environment. | - **Kubernetes Deployment**: Running agents on Kubernetes <br> - **Container Orchestration**: Managing agent lifecycles with K8s <br> - **Service Communication**: Inter-agent communication in K8s |
|
|
| [Document Agent with Chainlit](https://github.com/dapr/dapr-agents/tree/main/quickstarts/06-document-agent-chainlit)<br>Create a conversational agent with an operational UI that can upload, and learn unstructured documents while retaining long-term memory. | - **Conversational Document Agent**: Upload and converse over unstructured documents <br> - **Cloud Agnostic Storage**: Upload files to multiple storage providers <br> - **Conversation Memory Storage**: Persists conversation history using external storage. |
|
|
| [Data Agent with MCP and Chainlit](https://github.com/dapr/dapr-agents/tree/main/quickstarts/08-data-agent-mcp-chainlit)<br>Build a conversational agent over a Postgres database using Model Composition Protocol (MCP) with a ChatGPT-like interface. | - **Database Querying**: Natural language queries to relational databases <br> - **MCP Integration**: Connecting to databases without DB-specific code <br> - **Data Analysis**: Complex data analysis through conversation |
|