docs/howto/setup-monitoring-tools/setup-fluentd-es-kibana.md

190 lines
5.2 KiB
Markdown

# Set up Fluentd, Elastic search and Kibana in Kubernetes
This document descriebs how to install Fluentd, Elastic Search, and Kibana to search logs in Kubernetes
## Prerequisites
- Kubernetes (> 1.14)
- [kubectl](https://kubernetes.io/docs/tasks/tools/install-kubectl/)
- [Helm 3](https://helm.sh/)
## Contents
- [Install Fluentd, Elastic Search, and Kibana](#install-fluentd-elastic-search-and-kibana)
- [Install Fluentd](#install-fluentd)
- [Install Dapr with JSON formatted logs](#install-dapr-with-json-formatted-logs)
- [Search logs](#search-logs)
## Install Elastic search and Kibana
1. Create namespace for monitoring tool and add Helm repo for Elastic Search
```bash
kubectl create namespace dapr-monitoring
```
2. Add Elastic helm repo
```bash
helm repo add elastic https://helm.elastic.co
helm repo update
```
3. Install Elastic Search using Helm
By default the chart creates 3 replicas which must be on different nodes. If your cluster has less than 3 nodes, specify a lower number of replicas. For example, this sets it to 1:
```
helm install elasticsearch elastic/elasticsearch -n dapr-monitoring --set replicas=1
```
Otherwise:
```bash
helm install elasticsearch elastic/elasticsearch -n dapr-monitoring
```
If you are using minikube or want to disable persistent volumes for development purposes, you can disable it by using the following command.
```bash
helm install elasticsearch elastic/elasticsearch -n dapr-monitoring --set persistence.enabled=false --replicas=1
```
4. Install Kibana
```bash
helm install kibana elastic/kibana -n dapr-monitoring
```
5. Validation
Ensure Elastic Search and Kibana are running in your Kubernetes cluster.
```bash
kubectl get pods -n dapr-monitoring
NAME READY STATUS RESTARTS AGE
elasticsearch-master-0 1/1 Running 0 6m58s
kibana-kibana-95bc54b89-zqdrk 1/1 Running 0 4m21s
```
## Install Fluentd
1. Install config map and Fluentd as a daemonset
Navigate to the following path if you're not already there (the one this document is in):
```
docs/howto/setup-monitoring-tools
```
> Note: If you already have Fluentd running in your cluster, please enable the nested json parser to parse JSON formatted log from Dapr.
```bash
kubectl apply -f ./fluentd-config-map.yaml
kubectl apply -f ./fluentd-dapr-with-rbac.yaml
```
2. Ensure that Fluentd is running as a daemonset; the number of instances should be the same as the number of cluster nodes. In the example below we only have 1 node.
```bash
kubectl get pods -n kube-system -w
NAME READY STATUS RESTARTS AGE
coredns-6955765f44-cxjxk 1/1 Running 0 4m41s
coredns-6955765f44-jlskv 1/1 Running 0 4m41s
etcd-m01 1/1 Running 0 4m48s
fluentd-sdrld 1/1 Running 0 14s
```
## Install Dapr with JSON formatted logs
1. Install Dapr with enabling JSON-formatted logs
```bash
helm repo add dapr https://daprio.azurecr.io/helm/v1/repo
helm repo update
helm install dapr dapr/dapr --namespace dapr-system --set global.logAsJson=true
```
2. Enable JSON formatted log in Dapr sidecar
Add `dapr.io/log-as-json: "true"` annotation to your deployment yaml.
Example:
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: pythonapp
labels:
app: python
spec:
replicas: 1
selector:
matchLabels:
app: python
template:
metadata:
labels:
app: python
annotations:
dapr.io/enabled: "true"
dapr.io/id: "pythonapp"
dapr.io/log-as-json: "true"
...
```
## Search logs
> Note: Elastic Search takes a time to index the logs that Fluentd sends.
1. Port-forward to svc/kibana-kibana
```
$ kubectl port-forward svc/kibana-kibana 5601 -n dapr-monitoring
Forwarding from 127.0.0.1:5601 -> 5601
Forwarding from [::1]:5601 -> 5601
Handling connection for 5601
Handling connection for 5601
```
2. Browse `http://localhost:5601`
3. Click Management -> Index Management
![kibana management](./img/kibana-1.png)
4. Wait until dapr-* is indexed.
![index log](./img/kibana-2.png)
5. Once dapr-* indexed, click Kibana->Index Patterns and Create Index Pattern
![create index pattern](./img/kibana-3.png)
6. Define index pattern - type `dapr*` in index pattern
![define index pattern](./img/kibana-4.png)
7. Select time stamp filed: `@timestamp`
![timestamp](./img/kibana-5.png)
8. Confirm that `scope`, `type`, `app_id`, `level`, etc are being indexed.
> Note: if you cannot find the indexed field, please wait. it depends on the volume of data and resource size where elastic search is running.
![indexing](./img/kibana-6.png)
9. Click `discover` icon and search `scope:*`
> Note: it would take some time to make log searchable based on the data volume and resource.
![discover](./img/kibana-7.png)
# References
* [Fluentd for Kubernetes](https://docs.fluentd.org/v/0.12/articles/kubernetes-fluentd)
* [Elastic search helm chart](https://github.com/elastic/helm-charts/tree/master/elasticsearch)
* [Kibana helm chart](https://github.com/elastic/helm-charts/tree/master/kibana)
* [Kibana Query Language](https://www.elastic.co/guide/en/kibana/current/kuery-query.html)