flagger/docs/gitbook/tutorials/gloo-progressive-delivery.md

388 lines
12 KiB
Markdown

# Gloo Canary Deployments
This guide shows you how to use the [Gloo Edge](https://gloo.solo.io/) ingress controller
and Flagger to automate canary releases and A/B testing.
![Flagger Gloo Ingress Controller](https://raw.githubusercontent.com/fluxcd/flagger/main/docs/diagrams/flagger-gloo-overview.png)
## Prerequisites
Flagger requires a Kubernetes cluster **v1.16** or newer and Gloo Edge ingress **1.6.0** or newer.
This guide was written for Flagger version **1.6.0** or higher. Prior versions of Flagger
used Gloo upstream groups to handle canaries, but newer versions of Flagger use Gloo
route tables to handle canaries as well as A/B testing.
Install Gloo with Helm v3:
```bash
helm repo add gloo https://storage.googleapis.com/solo-public-helm
kubectl create ns gloo-system
helm upgrade -i gloo gloo/gloo \
--namespace gloo-system
```
Install Flagger and the Prometheus add-on in the same namespace as Gloo:
```bash
helm repo add flagger https://flagger.app
helm upgrade -i flagger flagger/flagger \
--namespace gloo-system \
--set prometheus.install=true \
--set meshProvider=gloo
```
## Bootstrap
Flagger takes a Kubernetes deployment and optionally a horizontal pod autoscaler (HPA),
then creates a series of objects (Kubernetes deployments, ClusterIP services and Gloo route tables groups).
These objects expose the application outside the cluster and drive the canary analysis and promotion.
Create a test namespace:
```bash
kubectl create ns test
```
Create a deployment and a horizontal pod autoscaler:
```bash
kubectl -n test apply -k https://github.com/fluxcd/flagger//kustomize/podinfo?ref=main
```
Deploy the load testing service to generate traffic during the canary analysis:
```bash
kubectl -n test apply -k https://github.com/fluxcd/flagger//kustomize/tester?ref=main
```
Create a virtual service definition that references a route table that will be generated by Flagger
(replace `app.example.com` with your own domain):
```yaml
apiVersion: gateway.solo.io/v1
kind: VirtualService
metadata:
name: podinfo
namespace: test
spec:
virtualHost:
domains:
- 'app.example.com'
routes:
- matchers:
- prefix: /
delegateAction:
ref:
name: podinfo
namespace: test
```
Save the above resource as podinfo-virtualservice.yaml and then apply it:
```bash
kubectl apply -f ./podinfo-virtualservice.yaml
```
Create a canary custom resource (replace `app.example.com` with your own domain):
```yaml
apiVersion: flagger.app/v1beta1
kind: Canary
metadata:
name: podinfo
namespace: test
spec:
provider: gloo
# deployment reference
targetRef:
apiVersion: apps/v1
kind: Deployment
name: podinfo
# HPA reference (optional)
autoscalerRef:
apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
name: podinfo
service:
# ClusterIP port number
port: 9898
# container port number or name (optional)
targetPort: 9898
analysis:
# schedule interval (default 60s)
interval: 10s
# max number of failed metric checks before rollback
threshold: 5
# max traffic percentage routed to canary
# percentage (0-100)
maxWeight: 50
# canary increment step
# percentage (0-100)
stepWeight: 5
# Gloo Prometheus checks
metrics:
- name: request-success-rate
# minimum req success rate (non 5xx responses)
# percentage (0-100)
thresholdRange:
min: 99
interval: 1m
- name: request-duration
# maximum req duration P99
# milliseconds
thresholdRange:
max: 500
interval: 30s
# testing (optional)
webhooks:
- name: acceptance-test
type: pre-rollout
url: http://flagger-loadtester.test/
timeout: 10s
metadata:
type: bash
cmd: "curl -sd 'test' http://podinfo-canary:9898/token | grep token"
- name: load-test
url: http://flagger-loadtester.test/
timeout: 5s
metadata:
type: cmd
cmd: "hey -z 2m -q 5 -c 2 -host app.example.com http://gateway-proxy.gloo-system"
```
Save the above resource as podinfo-canary.yaml and then apply it:
```bash
kubectl apply -f ./podinfo-canary.yaml
```
After a couple of seconds Flagger will create the canary objects:
```bash
# applied
deployment.apps/podinfo
horizontalpodautoscaler.autoscaling/podinfo
virtualservices.gateway.solo.io/podinfo
canary.flagger.app/podinfo
# generated
deployment.apps/podinfo-primary
horizontalpodautoscaler.autoscaling/podinfo-primary
service/podinfo
service/podinfo-canary
service/podinfo-primary
routetables.gateway.solo.io/podinfo
```
When the bootstrap finishes Flagger will set the canary status to initialized:
```bash
kubectl -n test get canary podinfo
NAME STATUS WEIGHT LASTTRANSITIONTIME
podinfo Initialized 0 2019-05-17T08:09:51Z
```
## Automated canary promotion
Flagger implements a control loop that gradually shifts traffic to the canary while measuring
key performance indicators like HTTP requests success rate, requests average duration and pod health.
Based on analysis of the KPIs a canary is promoted or aborted, and the analysis result is published to Slack.
![Flagger Canary Stages](https://raw.githubusercontent.com/fluxcd/flagger/main/docs/diagrams/flagger-canary-steps.png)
Trigger a canary deployment by updating the container image:
```bash
kubectl -n test set image deployment/podinfo \
podinfod=stefanprodan/podinfo:3.1.1
```
Flagger detects that the deployment revision changed and starts a new rollout:
```text
kubectl -n test describe canary/podinfo
Status:
Canary Weight: 0
Failed Checks: 0
Phase: Succeeded
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Synced 3m flagger New revision detected podinfo.test
Normal Synced 3m flagger Scaling up podinfo.test
Warning Synced 3m flagger Waiting for podinfo.test rollout to finish: 0 of 1 updated replicas are available
Normal Synced 3m flagger Advance podinfo.test canary weight 5
Normal Synced 3m flagger Advance podinfo.test canary weight 10
Normal Synced 3m flagger Advance podinfo.test canary weight 15
Normal Synced 2m flagger Advance podinfo.test canary weight 20
Normal Synced 2m flagger Advance podinfo.test canary weight 25
Normal Synced 1m flagger Advance podinfo.test canary weight 30
Normal Synced 1m flagger Advance podinfo.test canary weight 35
Normal Synced 55s flagger Advance podinfo.test canary weight 40
Normal Synced 45s flagger Advance podinfo.test canary weight 45
Normal Synced 35s flagger Advance podinfo.test canary weight 50
Normal Synced 25s flagger Copying podinfo.test template spec to podinfo-primary.test
Warning Synced 15s flagger Waiting for podinfo-primary.test rollout to finish: 1 of 2 updated replicas are available
Normal Synced 5s flagger Promotion completed! Scaling down podinfo.test
```
**Note** that if you apply new changes to the deployment during the canary analysis, Flagger will restart the analysis.
You can monitor all canaries with:
```bash
watch kubectl get canaries --all-namespaces
NAMESPACE NAME STATUS WEIGHT LASTTRANSITIONTIME
test podinfo Progressing 15 2019-05-17T14:05:07Z
prod frontend Succeeded 0 2019-05-17T16:15:07Z
prod backend Failed 0 2019-05-17T17:05:07Z
```
## Automated rollback
During the canary analysis you can generate HTTP 500 errors and high latency to test if
Flagger pauses and rolls back the faulted version.
Trigger another canary deployment:
```bash
kubectl -n test set image deployment/podinfo \
podinfod=stefanprodan/podinfo:3.1.2
```
Generate HTTP 500 errors:
```bash
watch curl -H 'Host: app.example.com' http://gateway-proxy.gloo-system/status/500
```
Generate high latency:
```bash
watch curl -H 'Host: app.example.com' http://gateway-proxy.gloo-system/delay/2
```
When the number of failed checks reaches the canary analysis threshold, the traffic is routed back to the primary,
the canary is scaled to zero and the rollout is marked as failed.
```text
kubectl -n test describe canary/podinfo
Status:
Canary Weight: 0
Failed Checks: 10
Phase: Failed
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Synced 3m flagger Starting canary deployment for podinfo.test
Normal Synced 3m flagger Advance podinfo.test canary weight 5
Normal Synced 3m flagger Advance podinfo.test canary weight 10
Normal Synced 3m flagger Advance podinfo.test canary weight 15
Normal Synced 3m flagger Halt podinfo.test advancement success rate 69.17% < 99%
Normal Synced 2m flagger Halt podinfo.test advancement success rate 61.39% < 99%
Normal Synced 2m flagger Halt podinfo.test advancement success rate 55.06% < 99%
Normal Synced 2m flagger Halt podinfo.test advancement success rate 47.00% < 99%
Normal Synced 2m flagger (combined from similar events): Halt podinfo.test advancement success rate 38.08% < 99%
Warning Synced 1m flagger Rolling back podinfo.test failed checks threshold reached 10
Warning Synced 1m flagger Canary failed! Scaling down podinfo.test
```
## Custom metrics
The canary analysis can be extended with Prometheus queries.
The demo app is instrumented with Prometheus so you can create a custom check that will use the HTTP request
duration histogram to validate the canary.
Create a metric template and apply it on the cluster:
```yaml
apiVersion: flagger.app/v1beta1
kind: MetricTemplate
metadata:
name: not-found-percentage
namespace: test
spec:
provider:
type: prometheus
address: http://flagger-prometheus.gloo-system:9090
query: |
100 - sum(
rate(
http_request_duration_seconds_count{
kubernetes_namespace="{{ namespace }}",
kubernetes_pod_name=~"{{ target }}-[0-9a-zA-Z]+(-[0-9a-zA-Z]+)"
status!="{{ interval }}"
}[1m]
)
)
/
sum(
rate(
http_request_duration_seconds_count{
kubernetes_namespace="{{ namespace }}",
kubernetes_pod_name=~"{{ target }}-[0-9a-zA-Z]+(-[0-9a-zA-Z]+)"
}[{{ interval }}]
)
) * 100
```
Edit the canary analysis and add the following metric:
```yaml
analysis:
metrics:
- name: "404s percentage"
templateRef:
name: not-found-percentage
thresholdRange:
max: 5
interval: 1m
```
The above configuration validates the canary by checking if the HTTP 404 req/sec percentage
is below 5 percent of the total traffic. If the 404s rate reaches the 5% threshold, then the canary fails.
Trigger a canary deployment by updating the container image:
```bash
kubectl -n test set image deployment/podinfo \
podinfod=stefanprodan/podinfo:3.1.3
```
Generate 404s:
```bash
watch curl -H 'Host: app.example.com' http://gateway-proxy.gloo-system/status/404
```
Watch Flagger logs:
```text
kubectl -n gloo-system logs deployment/flagger -f | jq .msg
Starting canary deployment for podinfo.test
Advance podinfo.test canary weight 5
Advance podinfo.test canary weight 10
Advance podinfo.test canary weight 15
Halt podinfo.test advancement 404s percentage 6.20 > 5
Halt podinfo.test advancement 404s percentage 6.45 > 5
Halt podinfo.test advancement 404s percentage 7.60 > 5
Halt podinfo.test advancement 404s percentage 8.69 > 5
Halt podinfo.test advancement 404s percentage 9.70 > 5
Rolling back podinfo.test failed checks threshold reached 5
Canary failed! Scaling down podinfo.test
```
If you have [alerting](../usage/alerting.md) configured,
Flagger will send a notification with the reason why the canary failed.
For an in-depth look at the analysis process read the [usage docs](../usage/how-it-works.md).