flagger/docs/gitbook/tutorials/kubernetes-blue-green.md

373 lines
11 KiB
Markdown

# Blue/Green Deployments
This guide shows you how to automate Blue/Green deployments with Flagger and Kubernetes.
For applications that are not deployed on a service mesh, Flagger can orchestrate Blue/Green style deployments with Kubernetes L4 networking. When using a service mesh blue/green can be used as specified [here](../usage/deployment-strategies.md).
![Flagger Blue/Green Stages](https://raw.githubusercontent.com/fluxcd/flagger/main/docs/diagrams/flagger-bluegreen-steps.png)
## Prerequisites
Flagger requires a Kubernetes cluster **v1.16** or newer.
Install Flagger and the Prometheus add-on:
```bash
helm repo add flagger https://flagger.app
helm upgrade -i flagger flagger/flagger \
--namespace flagger \
--set prometheus.install=true \
--set meshProvider=kubernetes
```
If you already have a Prometheus instance running in your cluster, you can point Flagger to the ClusterIP service with:
```bash
helm upgrade -i flagger flagger/flagger \
--namespace flagger \
--set metricsServer=http://prometheus.monitoring:9090
```
Optionally you can enable Slack notifications:
```bash
helm upgrade -i flagger flagger/flagger \
--reuse-values \
--namespace flagger \
--set slack.url=https://hooks.slack.com/services/YOUR/SLACK/WEBHOOK \
--set slack.channel=general \
--set slack.user=flagger
```
## Bootstrap
Flagger takes a Kubernetes deployment and optionally a horizontal pod autoscaler \(HPA\), then creates a series of objects \(Kubernetes deployment and ClusterIP services\). These objects expose the application inside the cluster and drive the canary analysis and Blue/Green promotion.
Create a test namespace:
```bash
kubectl create ns test
```
Create a deployment and a horizontal pod autoscaler:
```bash
kubectl apply -k https://github.com/fluxcd/flagger//kustomize/podinfo?ref=main
```
Deploy the load testing service to generate traffic during the analysis:
```bash
kubectl apply -k https://github.com/fluxcd/flagger//kustomize/tester?ref=main
```
Create a canary custom resource:
```yaml
apiVersion: flagger.app/v1beta1
kind: Canary
metadata:
name: podinfo
namespace: test
spec:
# service mesh provider can be: kubernetes, istio, appmesh, nginx, gloo
provider: kubernetes
# deployment reference
targetRef:
apiVersion: apps/v1
kind: Deployment
name: podinfo
# the maximum time in seconds for the canary deployment
# to make progress before rollback (default 600s)
progressDeadlineSeconds: 60
# HPA reference (optional)
autoscalerRef:
apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
name: podinfo
service:
port: 9898
portDiscovery: true
analysis:
# schedule interval (default 60s)
interval: 30s
# max number of failed checks before rollback
threshold: 2
# number of checks to run before rollback
iterations: 10
# Prometheus checks based on
# http_request_duration_seconds histogram
metrics:
- name: request-success-rate
# minimum req success rate (non 5xx responses)
# percentage (0-100)
thresholdRange:
min: 99
interval: 1m
- name: request-duration
# maximum req duration P99
# milliseconds
thresholdRange:
max: 500
interval: 30s
# acceptance/load testing hooks
webhooks:
- name: smoke-test
type: pre-rollout
url: http://flagger-loadtester.test/
timeout: 15s
metadata:
type: bash
cmd: "curl -sd 'anon' http://podinfo-canary.test:9898/token | grep token"
- name: load-test
url: http://flagger-loadtester.test/
timeout: 5s
metadata:
type: cmd
cmd: "hey -z 1m -q 10 -c 2 http://podinfo-canary.test:9898/"
```
The above configuration will run an analysis for five minutes.
Save the above resource as podinfo-canary.yaml and then apply it:
```bash
kubectl apply -f ./podinfo-canary.yaml
```
After a couple of seconds Flagger will create the canary objects:
```bash
# applied
deployment.apps/podinfo
horizontalpodautoscaler.autoscaling/podinfo
canary.flagger.app/podinfo
# generated
deployment.apps/podinfo-primary
horizontalpodautoscaler.autoscaling/podinfo-primary
service/podinfo
service/podinfo-canary
service/podinfo-primary
```
Blue/Green scenario:
* on bootstrap, Flagger will create three ClusterIP services \(`app-primary`,`app-canary`, `app`\)
and a shadow deployment named `app-primary` that represents the blue version
* when a new version is detected, Flagger would scale up the green version and run the conformance tests
\(the tests should target the `app-canary` ClusterIP service to reach the green version\)
* if the conformance tests are passing, Flagger would start the load tests and validate them with custom Prometheus queries
* if the load test analysis is successful, Flagger will promote the new version to `app-primary` and scale down the green version
## Automated Blue/Green promotion
Trigger a deployment by updating the container image:
```bash
kubectl -n test set image deployment/podinfo \
podinfod=stefanprodan/podinfo:3.1.1
```
Flagger detects that the deployment revision changed and starts a new rollout:
```text
kubectl -n test describe canary/podinfo
Events:
New revision detected podinfo.test
Waiting for podinfo.test rollout to finish: 0 of 1 updated replicas are available
Pre-rollout check acceptance-test passed
Advance podinfo.test canary iteration 1/10
Advance podinfo.test canary iteration 2/10
Advance podinfo.test canary iteration 3/10
Advance podinfo.test canary iteration 4/10
Advance podinfo.test canary iteration 5/10
Advance podinfo.test canary iteration 6/10
Advance podinfo.test canary iteration 7/10
Advance podinfo.test canary iteration 8/10
Advance podinfo.test canary iteration 9/10
Advance podinfo.test canary iteration 10/10
Copying podinfo.test template spec to podinfo-primary.test
Waiting for podinfo-primary.test rollout to finish: 1 of 2 updated replicas are available
Promotion completed! Scaling down podinfo.test
```
**Note** that if you apply new changes to the deployment during the canary analysis, Flagger will restart the analysis.
You can monitor all canaries with:
```bash
watch kubectl get canaries --all-namespaces
NAMESPACE NAME STATUS WEIGHT LASTTRANSITIONTIME
test podinfo Progressing 100 2019-06-16T14:05:07Z
prod frontend Succeeded 0 2019-06-15T16:15:07Z
prod backend Failed 0 2019-06-14T17:05:07Z
```
## Automated rollback
During the analysis you can generate HTTP 500 errors and high latency to test Flagger's rollback.
Exec into the load tester pod with:
```bash
kubectl -n test exec -it flagger-loadtester-xx-xx sh
```
Generate HTTP 500 errors:
```bash
watch curl http://podinfo-canary.test:9898/status/500
```
Generate latency:
```bash
watch curl http://podinfo-canary.test:9898/delay/1
```
When the number of failed checks reaches the analysis threshold, the green version is scaled to zero and the rollout is marked as failed.
```text
kubectl -n test describe canary/podinfo
Status:
Failed Checks: 2
Phase: Failed
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Synced 3m flagger New revision detected podinfo.test
Normal Synced 3m flagger Advance podinfo.test canary iteration 1/10
Normal Synced 3m flagger Advance podinfo.test canary iteration 2/10
Normal Synced 3m flagger Advance podinfo.test canary iteration 3/10
Normal Synced 3m flagger Halt podinfo.test advancement success rate 69.17% < 99%
Normal Synced 2m flagger Halt podinfo.test advancement success rate 61.39% < 99%
Warning Synced 2m flagger Rolling back podinfo.test failed checks threshold reached 2
Warning Synced 1m flagger Canary failed! Scaling down podinfo.test
```
## Custom metrics
The analysis can be extended with Prometheus queries. The demo app is instrumented with Prometheus so you can create a custom check that will use the HTTP request duration histogram to validate the canary \(green version\).
Create a metric template and apply it on the cluster:
```yaml
apiVersion: flagger.app/v1beta1
kind: MetricTemplate
metadata:
name: not-found-percentage
namespace: test
spec:
provider:
type: prometheus
address: http://flagger-prometheus.flagger:9090
query: |
100 - sum(
rate(
http_request_duration_seconds_count{
kubernetes_namespace="{{ namespace }}",
kubernetes_pod_name=~"{{ target }}-[0-9a-zA-Z]+(-[0-9a-zA-Z]+)"
status!="{{ interval }}"
}[1m]
)
)
/
sum(
rate(
http_request_duration_seconds_count{
kubernetes_namespace="{{ namespace }}",
kubernetes_pod_name=~"{{ target }}-[0-9a-zA-Z]+(-[0-9a-zA-Z]+)"
}[{{ interval }}]
)
) * 100
```
Edit the canary analysis and add the following metric:
```yaml
analysis:
metrics:
- name: "404s percentage"
templateRef:
name: not-found-percentage
thresholdRange:
max: 5
interval: 1m
```
The above configuration validates the canary \(green version\) by checking if the HTTP 404 req/sec percentage is below 5 percent of the total traffic. If the 404s rate reaches the 5% threshold, then the rollout is rolled back.
Trigger a deployment by updating the container image:
```bash
kubectl -n test set image deployment/podinfo \
podinfod=stefanprodan/podinfo:3.1.3
```
Generate 404s:
```bash
watch curl http://podinfo-canary.test:9898/status/400
```
Watch Flagger logs:
```text
kubectl -n flagger logs deployment/flagger -f | jq .msg
New revision detected podinfo.test
Scaling up podinfo.test
Advance podinfo.test canary iteration 1/10
Halt podinfo.test advancement 404s percentage 6.20 > 5
Halt podinfo.test advancement 404s percentage 6.45 > 5
Rolling back podinfo.test failed checks threshold reached 2
Canary failed! Scaling down podinfo.test
```
If you have [alerting](../usage/alerting.md) configured, Flagger will send a notification with the reason why the canary failed.
## Conformance Testing with Helm
Flagger comes with a testing service that can run Helm tests when configured as a pre-rollout webhook.
Deploy the Helm test runner in the `kube-system` namespace using the `tiller` service account:
```bash
helm repo add flagger https://flagger.app
helm upgrade -i flagger-helmtester flagger/loadtester \
--namespace=kube-system \
--set serviceAccountName=tiller
```
When deployed the Helm tester API will be available at `http://flagger-helmtester.kube-system/`.
Add a helm test pre-rollout hook to your chart:
```yaml
analysis:
webhooks:
- name: "conformance testing"
type: pre-rollout
url: http://flagger-helmtester.kube-system/
timeout: 3m
metadata:
type: "helm"
cmd: "test {{ .Release.Name }} --cleanup"
```
When the canary analysis starts, Flagger will call the pre-rollout webhooks. If the helm test fails, Flagger will retry until the analysis threshold is reached and the canary is rolled back.
For an in-depth look at the analysis process read the [usage docs](../usage/how-it-works.md).