flagger/docs/gitbook/tutorials/keda-scaledobject.md

235 lines
8.0 KiB
Markdown

# Canary analysis with KEDA ScaledObjects
This guide shows you how to use Flagger with KEDA ScaledObjects to autoscale workloads during a Canary analysis run.
We will be using a Blue/Green deployment strategy with the Kubernetes provider for the sake of this tutorial, but
you can use any deployment strategy combined with any supported provider.
## Prerequisites
Flagger requires a Kubernetes cluster **v1.16** or newer. For this tutorial, we'll need KEDA **2.71** or newer.
Install KEDA:
```bash
helm repo add kedacore https://kedacore.github.io/charts
kubectl create namespace keda
helm install keda kedacore/keda --namespace keda
```
Install Flagger:
```bash
helm repo add flagger https://flagger.app
helm upgrade -i flagger flagger/flagger \
--namespace flagger \
--set prometheus.install=true \
--set meshProvider=kubernetes
```
## Bootstrap
Flagger takes a Kubernetes deployment and a KEDA ScaledObject targeting the deployment. It then creates a series of objects
(Kubernetes deployments, ClusterIP services and another KEDA ScaledObject targeting the created Deployment).
These objects expose the application inside the mesh and drive the Canary analysis and Blue/Green promotion.
Create a test namespace:
```bash
kubectl create ns test
```
Create a deployment named `podinfo`:
```bash
kubectl apply -n test -f https://raw.githubusercontent.com/fluxcd/flagger/main/kustomize/podinfo/deployment.yaml
```
Deploy the load testing service to generate traffic during the analysis:
```bash
kubectl apply -k https://github.com/fluxcd/flagger//kustomize/tester?ref=main
```
Create a ScaledObject which targets the `podinfo` deployment and uses Prometheus as a trigger:
```yaml
apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
name: podinfo-so
namespace: test
spec:
scaleTargetRef:
name: podinfo
pollingInterval: 10
cooldownPeriod: 20
minReplicaCount: 1
maxReplicaCount: 3
triggers:
- type: prometheus
metadata:
name: prom-trigger
serverAddress: http://flagger-prometheus.flagger-system:9090
metricName: http_requests_total
query: sum(rate(http_requests_total{ app="podinfo" }[30s]))
threshold: '5'
```
Create a canary custom resource for the `podinfo` deployment:
```yaml
apiVersion: flagger.app/v1beta1
kind: Canary
metadata:
name: podinfo
namespace: test
spec:
provider: kubernetes
# deployment reference
targetRef:
apiVersion: apps/v1
kind: Deployment
name: podinfo
# Scaler reference
autoscalerRef:
apiVersion: keda.sh/v1alpha1
kind: ScaledObject
# ScaledObject targeting the canary deployment
name: podinfo-so
# Mapping between trigger names and the related query to use for the generated
# ScaledObject targeting the primary deployment. (Optional)
primaryScalerQueries:
prom-trigger: sum(rate(http_requests_total{ app="podinfo-primary" }[30s]))
# the maximum time in seconds for the canary deployment
# to make progress before rollback (default 600s)
progressDeadlineSeconds: 60
service:
port: 80
targetPort: 9898
name: podinfo-svc
portDiscovery: true
analysis:
# schedule interval (default 60s)
interval: 15s
# max number of failed checks before rollback
threshold: 5
# number of checks to run before promotion
iterations: 5
# Prometheus checks based on
# http_request_duration_seconds histogram
metrics:
- name: request-success-rate
interval: 1m
thresholdRange:
min: 99
- name: request-duration
interval: 30s
thresholdRange:
max: 500
# load testing hooks
webhooks:
- name: load-test
url: http://flagger-loadtester.test/
timeout: 5s
metadata:
type: cmd
cmd: "hey -z 2m -q 20 -c 2 http://podinfo-svc-canary.test/"
```
Save the above resource as `podinfo-canary.yaml` and then apply it:
```bash
kubectl apply -f ./podinfo-canary.yaml
```
After a couple of seconds Flagger will create the canary objects:
```bash
# applied
deployment.apps/podinfo
scaledobject.keda.sh/podinfo-so
canary.flagger.app/podinfo
# generated
deployment.apps/podinfo-primary
horizontalpodautoscaler.autoscaling/podinfo-primary
service/podinfo
service/podinfo-canary
service/podinfo-primary
scaledobject.keda.sh/podinfo-so-primary
```
We refer to our ScaledObject for the canary deployment using `.spec.autoscalerRef`. Flagger will use this to generate a ScaledObject which will scale the primary deployment.
By default, Flagger will try to guess the query to use for the primary ScaledObject, by replacing all mentions of `.spec.targetRef.Name` and `{.spec.targetRef.Name}-canary`
with `{.spec.targetRef.Name}-primary`, for all triggers.
For eg, if your ScaledObject has a trigger query defined as: `sum(rate(http_requests_total{ app="podinfo" }[30s]))` or `sum(rate(http_requests_total{ app="podinfo-primary" }[30s]))`, then the primary ScaledObject will have the same trigger with a query defined as `sum(rate(http_requests_total{ app="podinfo-primary" }[30s]))`.
If, the generated query does not meet your requirements, you can specify the query for autoscaling the primary deployment explicitly using
`.spec.autoscalerRef.primaryScalerQueries`, which lets you define a query for each trigger. Please note that, your ScaledObject's `.spec.triggers[@].name` must
not be blank, as Flagger needs that to identify each trigger uniquely.
After the boostrap, the podinfo deployment will be scaled to zero and the traffic to `podinfo.test` will be routed to the primary pods. To keep the podinfo deployment
at 0 replicas and pause auto scaling, Flagger will add an annotation to your ScaledObject: `autoscaling.keda.sh/paused-replicas: 0`.
During the canary analysis, the annotation is removed, to enable auto scaling for the podinfo deployment.
The `podinfo-canary.test` address can be used to target directly the canary pods.
When the canary analysis starts, Flagger will call the pre-rollout webhooks before routing traffic to the canary. The Blue/Green deployment will run for five iterations while validating the HTTP metrics and rollout hooks every 15 seconds.
## Automated Blue/Green promotion
Trigger a deployment by updating the container image:
```bash
kubectl -n test set image deployment/podinfo \
podinfod=ghcr.io/stefanprodan/podinfo:6.0.1
```
Flagger detects that the deployment revision changed and starts a new rollout:
```text
kubectl -n test describe canary/podinfo
Events:
New revision detected podinfo.test
Waiting for podinfo.test rollout to finish: 0 of 1 updated replicas are available
Pre-rollout check acceptance-test passed
Advance podinfo.test canary iteration 1/10
Advance podinfo.test canary iteration 2/10
Advance podinfo.test canary iteration 3/10
Advance podinfo.test canary iteration 4/10
Advance podinfo.test canary iteration 5/10
Advance podinfo.test canary iteration 6/10
Advance podinfo.test canary iteration 7/10
Advance podinfo.test canary iteration 8/10
Advance podinfo.test canary iteration 9/10
Advance podinfo.test canary iteration 10/10
Copying podinfo.test template spec to podinfo-primary.test
Waiting for podinfo-primary.test rollout to finish: 1 of 2 updated replicas are available
Promotion completed! Scaling down podinfo.test
```
**Note** that if you apply new changes to the deployment during the canary analysis, Flagger will restart the analysis.
You can monitor all canaries with:
```bash
watch kubectl get canaries --all-namespaces
NAMESPACE NAME STATUS WEIGHT LASTTRANSITIONTIME
test podinfo Progressing 100 2019-06-16T14:05:07Z
```
You can monitor the scaling of the deployments with:
```bash
watch kubectl -n test get deploy podinfo
NAME READY UP-TO-DATE AVAILABLE AGE
flagger-loadtester 1/1 1 1 4m21s
podinfo 3/3 3 3 4m28s
podinfo-primary 3/3 3 3 3m14s
```
You can mointor how Flagger edits the annotations of your ScaledObject with:
```bash
watch "kubectl get -n test scaledobjects podinfo-so -o=jsonpath='{.metadata.annotations}'"
```