istio.io/content/en/docs/setup/additional-setup/gateway/index.md

13 KiB

title description weight keywords owner test
Installing Gateways Install and customize Istio Gateways. 40
install
gateway
kubernetes
istio/wg-environments-maintainers yes

{{< tip >}} {{< boilerplate gateway-api-future >}} If you use the Gateway API, you will not need to install and manage a gateway Deployment as described in this document. By default, a gateway Deployment and Service will be automatically provisioned based on the Gateway configuration. Refer to the Gateway API task for details. {{< /tip >}}

Along with creating a service mesh, Istio allows you to manage gateways, which are Envoy proxies running at the edge of the mesh, providing fine-grained control over traffic entering and leaving the mesh.

Some of Istio's built in configuration profiles deploy gateways during installation. For example, a call to istioctl install with default settings will deploy an ingress gateway along with the control plane. Although fine for evaluation and simple use cases, this couples the gateway to the control plane, making management and upgrade more complicated. For production Istio deployments, it is highly recommended to decouple these to allow independent operation.

Follow this guide to separately deploy and manage one or more gateways in a production installation of Istio.

Prerequisites

This guide requires the Istio control plane to be installed before proceeding.

{{< tip >}} You can use the minimal profile, for example istioctl install --set profile=minimal, to prevent any gateways from being deployed during installation. {{< /tip >}}

Deploying a gateway

Using the same mechanisms as Istio sidecar injection, the Envoy proxy configuration for gateways can similarly be auto-injected.

Using auto-injection for gateway deployments is recommended as it gives developers full control over the gateway deployment, while also simplifying operations. When a new upgrade is available, or a configuration has changed, gateway pods can be updated by simply restarting them. This makes the experience of operating a gateway deployment the same as operating sidecars.

To support users with existing deployment tools, Istio provides a few different ways to deploy a gateway. Each method will produce the same result. Choose the method you are most familiar with.

{{< tip >}} As a security best practice, it is recommended to deploy the gateway in a different namespace from the control plane. {{< /tip >}}

All methods listed below rely on Injection to populate additional pod settings at runtime. In order to support this, the namespace the gateway is deployed in must not have the istio-injection=disabled label. If it does, you will see pods failing to startup attempting to pull the auto image, which is a placeholder that is intended to be replaced when a pod is created.

{{< tabset category-name="gateway-install-type" >}}

{{< tab name="IstioOperator" category-value="iop" >}}

First, setup an IstioOperator configuration file, called ingress.yaml here:

{{< text yaml >}} apiVersion: install.istio.io/v1alpha1 kind: IstioOperator metadata: name: ingress spec: profile: empty # Do not install CRDs or the control plane components: ingressGateways: - name: istio-ingressgateway namespace: istio-ingress enabled: true label: # Set a unique label for the gateway. This is required to ensure Gateways # can select this workload istio: ingressgateway values: gateways: istio-ingressgateway: # Enable gateway injection injectionTemplate: gateway {{< /text >}}

Then install using standard istioctl commands:

{{< text bash >}} $ kubectl create namespace istio-ingress $ istioctl install -f ingress.yaml {{< /text >}}

{{< /tab >}} {{< tab name="Helm" category-value="helm" >}}

Install using standard helm commands:

{{< text bash >}} $ kubectl create namespace istio-ingress $ helm install istio-ingressgateway istio/gateway -n istio-ingress {{< /text >}}

To see possible supported configuration values, run helm show values istio/gateway. The Helm repository README contains additional information on usage.

{{< tip >}}

When deploying the gateway in an OpenShift cluster, use the openshift profile to override the default values, for example:

{{< text bash >}} $ helm install istio-ingressgateway istio/gateway -n istio-ingress --set global.platform=openshift {{< /text >}}

{{< /tip >}}

{{< /tab >}}

{{< tab name="Kubernetes YAML" category-value="yaml" >}}

First, setup the Kubernetes configuration, called ingress.yaml here:

{{< text yaml >}} apiVersion: v1 kind: Service metadata: name: istio-ingressgateway namespace: istio-ingress spec: type: LoadBalancer selector: istio: ingressgateway ports:

  • port: 80 name: http
  • port: 443 name: https

apiVersion: apps/v1 kind: Deployment metadata: name: istio-ingressgateway namespace: istio-ingress spec: selector: matchLabels: istio: ingressgateway template: metadata: annotations: # Select the gateway injection template (rather than the default sidecar template) inject.istio.io/templates: gateway labels: # Set a unique label for the gateway. This is required to ensure Gateways can select this workload istio: ingressgateway # Enable gateway injection. If connecting to a revisioned control plane, replace with "istio.io/rev: revision-name" sidecar.istio.io/inject: "true" spec: # Allow binding to all ports (such as 80 and 443) securityContext: sysctls: - name: net.ipv4.ip_unprivileged_port_start value: "0" containers: - name: istio-proxy image: auto # The image will automatically update each time the pod starts. # Drop all privileges, allowing to run as non-root securityContext: capabilities: drop: - ALL runAsUser: 1337 runAsGroup: 1337

Set up roles to allow reading credentials for TLS

apiVersion: rbac.authorization.k8s.io/v1 kind: Role metadata: name: istio-ingressgateway-sds namespace: istio-ingress rules:

  • apiGroups: [""] resources: ["secrets"] verbs: ["get", "watch", "list"]

apiVersion: rbac.authorization.k8s.io/v1 kind: RoleBinding metadata: name: istio-ingressgateway-sds namespace: istio-ingress roleRef: apiGroup: rbac.authorization.k8s.io kind: Role name: istio-ingressgateway-sds subjects:

  • kind: ServiceAccount name: default {{< /text >}}

{{< warning >}} This example shows the bare minimum needed to get a gateway running. For production usage, additional configuration such as HorizontalPodAutoscaler, PodDisruptionBudget, and resource requests/limits are recommended. These are automatically included when using the other gateway installation methods. {{< /warning >}}

{{< tip >}} The sidecar.istio.io/inject label on the pod is used in this example to enable injection. Just like application sidecar injection, this can instead be controlled at the namespace level. See Controlling the injection policy for more information. {{< /tip >}}

Next, apply it to the cluster:

{{< text bash >}} $ kubectl create namespace istio-ingress $ kubectl apply -f ingress.yaml {{< /text >}}

{{< /tab >}}

{{< /tabset >}}

Managing gateways

The following describes how to manage gateways after installation. For more information on their usage, follow the Ingress and Egress tasks.

Gateway selectors

The labels on a gateway deployment's pods are used by Gateway configuration resources, so it's important that your Gateway selector matches these labels.

For example, in the above deployments, the istio=ingressgateway label is set on the gateway pods. To apply a Gateway to these deployments, you need to select the same label:

{{< text yaml >}} apiVersion: networking.istio.io/v1 kind: Gateway metadata: name: gateway spec: selector: istio: ingressgateway ... {{< /text >}}

Gateway deployment topologies

Depending on your mesh configuration and use cases, you may wish to deploy gateways in different ways. A few different gateway deployment patterns are shown below. Note that more than one of these patterns can be used within the same cluster.

Shared gateway

In this model, a single centralized gateway is used by many applications, possibly across many namespaces. Gateway(s) in the ingress namespace delegate ownership of routes to application namespaces, but retain control over TLS configuration.

{{< image width="50%" link="shared-gateway.svg" caption="Shared gateway" >}}

This model works well when you have many applications you want to expose externally, as they are able to use shared infrastructure. It also works well in use cases that have the same domain or TLS certificates shared by many applications.

Dedicated application gateway

In this model, an application namespace has its own dedicated gateway installation. This allows giving full control and ownership to a single namespace. This level of isolation can be helpful for critical applications that have strict performance or security requirements.

{{< image width="50%" link="user-gateway.svg" caption="Dedicated application gateway" >}}

Unless there is another load balancer in front of Istio, this typically means that each application will have its own IP address, which may complicate DNS configurations.

Upgrading gateways

In place upgrade

Because gateways utilize pod injection, new gateway pods that are created will automatically be injected with the latest configuration, which includes the version.

To pick up changes to the gateway configuration, the pods can simply be restarted, using commands such as kubectl rollout restart deployment.

If you would like to change the control plane revision in use by the gateway, you can set the istio.io/rev label on the gateway Deployment, which will also trigger a rolling restart.

{{< image width="50%" link="inplace-upgrade.svg" caption="In place upgrade in progress" >}}

Canary upgrade (advanced)

{{< warning >}} This upgrade method depends on control plane revisions, and therefore can only be used in conjunction with control plane canary upgrade. {{< /warning >}}

If you would like to more slowly control the rollout of a new control plane revision, you can run multiple versions of a gateway deployment. For example, if you want to roll out a new revision, canary, create a copy of your gateway deployment with the istio.io/rev=canary label set:

{{< text yaml >}} apiVersion: apps/v1 kind: Deployment metadata: name: istio-ingressgateway-canary namespace: istio-ingress spec: selector: matchLabels: istio: ingressgateway template: metadata: annotations: inject.istio.io/templates: gateway labels: istio: ingressgateway istio.io/rev: canary # Set to the control plane revision you want to deploy spec: containers: - name: istio-proxy image: auto {{< /text >}}

When this deployment is created, you will then have two versions of the gateway, both selected by the same Service:

{{< text bash >}} $ kubectl get endpoints -n istio-ingress -o "custom-columns=NAME:.metadata.name,PODS:.subsets[].addresses[].targetRef.name" NAME PODS istio-ingressgateway istio-ingressgateway-...,istio-ingressgateway-canary-... {{< /text >}}

{{< image width="50%" link="canary-upgrade.svg" caption="Canary upgrade in progress" >}}

Unlike application services deployed inside the mesh, you cannot use Istio traffic shifting to distribute the traffic between the gateway versions because their traffic is coming directly from external clients that Istio does not control. Instead, you can control the distribution of traffic by the number of replicas of each deployment. If you use another load balancer in front of Istio, you may also use that to control the traffic distribution.

{{< warning >}} Because other installation methods bundle the gateway Service, which controls its external IP address, with the gateway Deployment, only the Kubernetes YAML method is supported for this upgrade method. {{< /warning >}}

Canary upgrade with external traffic shifting (advanced)

A variant of the canary upgrade approach is to shift the traffic between the versions using a high level construct outside Istio, such as an external load balancer or DNS.

{{< image width="50%" link="high-level-canary.svg" caption="Canary upgrade in progress with external traffic shifting" >}}

This offers fine-grained control, but may be unsuitable or overly complicated to set up in some environments.

Cleanup

  • Cleanup Istio ingress gateway

    {{< text bash >}} $ istioctl uninstall --istioNamespace istio-ingress -y --purge $ kubectl delete ns istio-ingress {{< /text >}}