examples/openvaccine-kaggle-competition/Readme.md

379 lines
13 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Objective
This example is based on the Titanic OpenVaccine competition (https://www.kaggle.com/c/stanford-covid-vaccine). The objective of this exercise is to develop models and design rules for RNA degradation.
## Environment
This pipeline was tested using Kubeflow 1.4 and kfp 1.1.2 and x86-64 and ARM based system which includes all Intel and AMD based CPU's and M1/M2 series Macbooks.
## Step 1: Setup Kubeflow as a Service
- If you havent already, sign up (https://www.arrikto.com/kubeflow-as-a-service/)
- Deploy Kubeflow
## Step 2: Launch a Notebook Server
- Bump memory to 2GB and vCPUs to 2
## Step 3: Clone the Project Repo to Your Notebook
- (Kubeflow as a Service) Open up a terminal in the Notebook Server and git clone the `kubeflow/examples` repository
```
git clone https://github.com/kubeflow/examples
```
## Step 4: Setup DockerHub and Docker
- If you havent already, sign up (https://hub.docker.com/) for DockerHub
- If you havent already, install Docker Desktop locally (https://www.docker.com/products/docker-desktop/) OR install the Docker command line utility (https://docs.docker.com/get-docker/) and enter `sudo docker login` command in your terminal and log into Docker with your your DockerHub username and password
## Step 5: Setup Kaggle
- If you havent already done so, sign up (https://www.kaggle.com/) for Kaggle
- (On Kaggle) Generate an API token (https://www.kaggle.com/docs/api)
- (Kubeflow as a Service) Create a Kubernetes secret
```
kubectl create secret generic kaggle-secret --from-literal=KAGGLE_USERNAME=<username> --from-literal=KAGGLE_KEY=<api_token>
```
## Step 6: Install Git
- (Locally) If you dont have it already, install Git (https://github.com/git-guides/install-git)
## Step 7: Clone the Project Repo Locally
- (Locally) Git clone the `kubeflow/examples` repository
```
git clone https://github.com/kubeflow/examples
```
## Step 8: Create a PodDefault Resource
- (Kubeflow as a Service) Navigate to the `openvaccine-kaggle-competition` directory
- Create a `resource.yaml` file
resource.yaml:
```
apiVersion: "kubeflow.org/v1alpha1"
kind: PodDefault
metadata:
name: kaggle-access
spec:
selector:
matchLabels:
kaggle-secret: "true"
desc: "kaggle-access"
volumeMounts:
- name: secret-volume
mountPath: /secret/kaggle
volumes:
- name: secret-volume
secret:
secretName: kaggle-secret
```
![image2](https://user-images.githubusercontent.com/17012391/177001253-3e525eb6-3415-428c-a52b-11803326af6b.png)
- Apply created resource using: `kubectl apply -f resource.yaml`
## Step 9: Explore the `load-data` directory
- (Locally) Navigate to the `openvaccine-kaggle-competition/pipeline-components/load-data` directory
- Open up the `load.py` file
- Note the code in this file that will perform the actions required in the “load-data” pipeline step
<img width="209" alt="image7" src="https://user-images.githubusercontent.com/17012391/177001311-efbee116-5a7a-498e-9d3a-6b50f192db97.png">
## Step 10: Build the `load-data` Docker Image
- (Locally) Navigate to the `openvaccine-kaggle-competition/pipeline-components/load-data` directory
- Build the Docker image if locally you are using arm64 (Apple M1)
```
docker build --platform=linux/amd64 -t <docker_username>/<docker_imagename>:<tag>-amd64 .
```
- OR build the Docker image if locally you are using amd64
```
docker build -t <docker_username>/<docker_imagename>:<tag> .
```
## Step 11: Push the `load-data` Docker Image to DockerHub
- (Locally) Navigate to the `openvaccine-kaggle-competition/pipeline-components/load-data` directory
- Push the Docker image if locally you are using arm64 (Apple M1)
```
docker push <docker_username>/<docker_imagename>:<tag>-amd64
```
- OR build the Docker image if locally you are using amd64
```
docker push <docker_username>/<docker_imagename>:<tag>
```
## Step 12: Explore the `preprocess-data` directory
- (Locally) Navigate to the `openvaccine-kaggle-competition/pipeline-components/preprocess-data` directory
- Open up the `preprocess.py` file
- Note the code in this file that will perform the actions required in the “preprocess” pipeline step
<img width="209" alt="image5" src="https://user-images.githubusercontent.com/17012391/177001608-bc82e3ea-7581-4de9-bd29-2d0fc410b817.png">
## Step 13: Explore the `preprocess-data` directory
- (Locally) Navigate to the `openvaccine-kaggle-competition/pipeline-components/preprocess-data` directory
- Build the Docker image if locally you are using arm64 (Apple M1)
```
docker build --platform=linux/amd64 -t <docker_username>/<docker_imagename>:<tag>-amd64 .
```
- OR build the Docker image if locally you are using amd64
```
docker build -t <docker_username>/<docker_imagename>:<tag> .
```
## Step 14: Push the `preprocess-data` Docker Image to DockerHub
- (Locally) Navigate to the `openvaccine-kaggle-competition/pipeline-components/preprocess-data` directory
- Push the Docker image if locally you are using arm64 (Apple M1)
```
docker push <docker_username>/<docker_imagename>:<tag>-amd64
```
- OR build the Docker image if locally you are using amd64
```
docker push <docker_username>/<docker_imagename>:<tag>
```
## Step 15: Explore the `model-training` directory
- (Locally) Navigate to the `openvaccine-kaggle-competition/pipeline-components/model-training` directory
- Open up the `model.py` file
- Note the code in this file that will perform the actions required in the “train” pipeline step
![image4](https://user-images.githubusercontent.com/17012391/177001740-a63f190c-284e-4328-ba01-17dbdbe61cee.png)
## Step 16: Build the `model-training` Docker Image
- (Locally) Navigate to the `openvaccine-kaggle-competition/pipeline-components/model-training` directory
- Build the Docker image if locally you are using arm64 (Apple M1)
```
docker build --platform=linux/amd64 -t <docker_username>/<docker_imagename>:<tag>-amd64 .
```
- OR build the Docker image if locally you are using amd64
```
docker build -t <docker_username>/<docker_imagename>:<tag> .
```
## Step 17: Push the `model-training` Docker Image to DockerHub
- (Locally) Navigate to the `openvaccine-kaggle-competition/pipeline-components/model-training` directory
- Push the Docker image if locally you are using arm64 (Apple M1)
```
docker push <docker_username>/<docker_imagename>:<tag>-amd64
```
- OR build the Docker image if locally you are using amd64
```
docker push <docker_username>/<docker_imagename>:<tag>
```
## Step 18: Explore the `model-evaluation` directory
- (Locally) Navigate to the `openvaccine-kaggle-competition/pipeline-components/model-evaluation` directory
- Open up the `eval.py` file
- Note the code in this file that will perform the actions required in the “test” pipeline step
![image1](https://user-images.githubusercontent.com/17012391/177001951-1f7b13b9-adea-48c1-89a7-d8dc67214133.png)
## Step 19: Build the `model-evaluation` Docker Image
- (Locally) Navigate to the `openvaccine-kaggle-competition/pipeline-components/model-evaluation` directory
- Build the Docker image if locally you are using arm64 (Apple M1)
```
docker build --platform=linux/amd64 -t <docker_username>/<docker_imagename>:<tag>-amd64 .
```
- OR build the Docker image if locally you are using amd64
```
docker build -t <docker_username>/<docker_imagename>:<tag> .
```
## Step 20: Push the `model-evaluation` Docker Image to DockerHub
- (Locally) Navigate to the `openvaccine-kaggle-competition/pipeline-components/model-evaluation` directory
- Push the Docker image if locally you are using arm64 (Apple M1)
```
docker push <docker_username>/<docker_imagename>:<tag>-amd64
```
- OR build the Docker image if locally you are using amd64
```
docker push <docker_username>/<docker_imagename>:<tag>
```
## Step 21: Modify the openvaccine-kaggle-competiton-kfp.py file
- (Kubeflow as a Service) Navigate to the `openvaccine-kaggle-competition` directory
- Update the `openvaccine-kaggle-competiton-kfp.py` with accurate Docker Image inputs
```
return dsl.ContainerOp(
name = 'load-data',
image = '<dockerhub username>/<image name>:<tag>',
—-----
def GetMsg(comp1):
return dsl.ContainerOp(
name = 'preprocess',
image = '<dockerhub username>/<image name>:<tag>',
—-----
def Train(comp2, trial, epoch, batchsize, embeddim, hiddendim, dropout, spdropout, trainsequencelength):
return dsl.ContainerOp(
name = 'train',
image = '<dockerhub username>/<image name>:<tag>',
—-----
def Eval(comp1, trial, epoch, batchsize, embeddim, hiddendim, dropout, spdropout, trainsequencelength):
return dsl.ContainerOp(
name = 'Evaluate',
image = '<dockerhub username>/<image name>:<tag>',
```
## Step 22: Generate a KFP Pipeline yaml File
- (Locally) Navigate to the `openvaccine-kaggle-competition` directory and delete the existing `openvaccine-kaggle-competition-kfp.yaml` file
- (Kubeflow as a Service) Navigate to the openvaccine-kaggle-competition directory
Build a python virtual environment :
Step a) Update pip
```
python3 -m pip install --upgrade pip
```
Step b) Install virtualenv
```
sudo pip3 install virtualenv
```
Step c) Check the installed version of venv
```
virtualenv --version
```
Step d) Name your virtual enviornment as kfp
```
virtualenv kfp
```
Step e) Activate your venv.
```
source kfp/bin/activate
```
After this virtual environment will get activated. Now in our activated venv we need to install following packages:
```
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install -y git python3-pip
python3 -m pip install kfp==1.1.2
```
After installing packages create the yaml file
Inside venv point your terminal to a path which contains our kfp file to build pipeline (openvaccine-kaggle-competition-kfp.py) and run these commands to generate a `yaml` file for the Pipeline:
```
python3 openvaccine-kaggle-competition-kfp.py
```
<img width="492" alt="image3" src="https://user-images.githubusercontent.com/17012391/177002110-5c0bdfc3-f9cc-453d-84b4-0107f506d54d.png">
Download the `openvaccine-kaggle-competition-kfp.yaml` file that was created to your local `openvaccine-kaggle-competition` directory
## Step 23: Create an Experiment
- (Kubeflow as a Service) Within the Kubeflow Central Dashboard, navigate to the Experiments (KFP) > Create Experiment view
- Name the experiment and click Next
- Click on Experiments (KFP) to view the experiment you just created
## Step 24: Create a Pipeline
- (Kubeflow as a Service) Within the Kubeflow Central Dashboard, navigate to the Pipelines > +Upload Pipeline view
- Name the pipeline
- Click on Upload a file
- Upload the local `openvaccine-kaggle-competition-kfp.yaml` file
- Click Create
## Step 25: Create a Run
- (Kubeflow as a Service) Click on Create Run in the view from the previous step
- Choose the experiment we created in Step 23
- Input your desired run parameters. For example:
```
TRIAL = 1
EPOCHS = 2
BATCH_SIZE = 64
EMBED_DIM = 100
HIDDEN_DIM = 128
DROPOUT = .2
SP_DROPOUT = .3
TRAIN_SEQUENCE_LENGTH = 107
```
- Click Start
- Click on the run name to view the runtime execution graph
![image6](https://user-images.githubusercontent.com/17012391/177002214-8258e3fa-e669-43cc-979d-70c1059f6aae.png)
## Troubleshooting Tips:
While running the pipeline as mentioned above you may come across this error:
![kaggle-secret-error-01](https://user-images.githubusercontent.com/17012391/175290593-aac58d80-0d9f-47bd-bd20-46e6f5207210.PNG)
errorlog:
```
kaggle.rest.ApiException: (403)
Reason: Forbidden
HTTP response headers: HTTPHeaderDict({'Content-Type': 'application/json', 'Date': 'Thu, 23 Jun 2022 11:31:18 GMT', 'Access-Control-Allow-Credentials': 'true', 'Set-Cookie': 'ka_sessionid=6817a347c75399a531148e19cad0aaeb; max-age=2626560; path=/, GCLB=CIGths3--ebbUg; path=/; HttpOnly', 'Transfer-Encoding': 'chunked', 'Vary':
HTTP response body: b'{"code":403,"message":"You must accept this competition\\u0027s rules before you\\u0027ll be able to download files."}'
```
This error occours for two reasons:
- Your Kaggle account is not verified with your phone number.
- Rules for this specific competitions are not accepted.
Lets accept Rules of competition
![rules](https://user-images.githubusercontent.com/17012391/175306310-10808262-07ce-4952-8fb0-3b7754e9fb46.png)
Click on "I Understand and Accept". After this you will be prompted to verify your account using your phone number:
![kaggle-secret-error-03](https://user-images.githubusercontent.com/17012391/175291608-daad1a47-119a-4e47-b48b-4f878d65ddd7.PNG)
Add your phone number and Kaggle will send the code to your number, enter this code and verify your account. ( Note: pipeline wont run if your Kaggle account is not verified )
## Success
After the kaggle account is verified pipeline run is successful we will get the following:
<img width="1244" alt="Screenshot 2022-06-06 at 3 00 51 PM" src="https://user-images.githubusercontent.com/17012391/172135040-50d6e9f3-d156-4e95-9b9f-492e99108d82.png">