17 KiB
Objective
This example is based on the Titanic Kaggle competition (https://www.kaggle.com/c/titanic). The objective of this exercise is to use machine learning to create a model that predicts which passengers survived the Titanic shipwreck.
Environment
This pipeline was tested using Kubeflow 1.4 and kfp 1.1.2 and x86-64 and ARM based system which includes all Intel and AMD based CPU's and M1/M2 series Macbooks
Step 1: Setup Kubeflow as a Service
- If you haven’t already, sign up (https://www.arrikto.com/kubeflow-as-a-service/)
- Deploy Kubeflow
Step 2: Launch a Notebook Server
- Default should work
Step 3: Clone the Project Repo to Your Notebook
- (Kubeflow as a Service) Open up a terminal in the Notebook Server and git clone the
kubeflow/examplesrepository
git clone https://github.com/kubeflow/examples
Step 4: Setup DockerHub and Docker
- If you haven’t already, sign up (https://hub.docker.com/) for DockerHub
- If you haven’t already, install Docker Desktop (https://www.docker.com/products/docker-desktop/) locally OR install the Docker command line utility (https://docs.docker.com/get-docker/) and enter
sudo docker logincommand in your terminal and log into Docker with your your DockerHub username and password
Step 5: Setup Kaggle
- If you haven’t already done so, sign up (https://www.kaggle.com/) for Kaggle
- (On Kaggle) Generate an API token (https://www.kaggle.com/docs/api)
- (Kubeflow as a Service) Create a Kubernetes secret
kubectl create secret generic kaggle-secret --from-literal=KAGGLE_USERNAME=<username> --from-literal=KAGGLE_KEY=<api_token>
Step 6: Install Git
- (Locally) If you don’t have it already, install Git
Step 7: Clone the Project Repo Locally
- (Locally) Git clone the kubeflow/examples repository
git clone https://github.com/kubeflow/examples
Step 8: Create a PodDefault Resource
- (Kubeflow as a Service) Navigate to the
titanic-kaggle-competitiondirectory - Create a
resource.yamlfile
resource.yaml:
apiVersion: "kubeflow.org/v1alpha1"
kind: PodDefault
metadata:
name: kaggle-access
spec:
selector:
matchLabels:
kaggle-secret: "true"
desc: "kaggle-access"
volumeMounts:
- name: secret-volume
mountPath: /secret/kaggle
volumes:
- name: secret-volume
secret:
secretName: kaggle-secret
- Apply the resource.yaml file:
kubectl apply -f resource.yaml
Step 9: Explore the pre-process directory
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/pre-processdirectory - Open up the
preprocess.pyfile - Note the code in this file that will perform the actions required in the “preprocess-data” pipeline step
Step 10: Build the preprocess-data Docker Image
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/pre-processdirectory - Build the Docker image if locally you are using arm64 (Apple M1)
docker build --platform=linux/amd64 -t <docker_username>/<docker_imagename>:<tag>-amd64 .
- OR build the Docker image if locally you are using amd64
docker build -t <docker_username>/<docker_imagename>:<tag> .
Step 11: Push the preprocess-data Docker Image to DockerHub
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/load-datadirectory - Push the Docker image if locally you are using arm64 (Apple M1)
docker push <docker_username>/<docker_imagename>:<tag>-amd64
- OR build the Docker image if locally you are using amd64
docker push <docker_username>/<docker_imagename>:<tag>
Step 12: Explore the featureengineering directory
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/featureengineeringdirectory - Open up the
featureengg.pyfile - Note the code in this file that will perform the actions required in the “featureengineering” pipeline step
Step 13: Build the featureengineering Docker Image
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/featureengineeringdirectory - Build the Docker image if locally you are using arm64 (Apple M1)
docker build --platform=linux/amd64 -t <docker_username>/<docker_imagename>:<tag>-amd64 .
- OR build the Docker image if locally you are using amd64
docker build -t <docker_username>/<docker_imagename>:<tag> .
Step 14: Push the featureengineering Docker Image to DockerHub
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/featureengineeringdirectory - Push the Docker image if locally you are using arm64 (Apple M1)
docker push <docker_username>/<docker_imagename>:<tag>-amd64
- OR build the Docker image if locally you are using amd64
docker push <docker_username>/<docker_imagename>:<tag>
Step 15: Explore the decisiontree directory
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/decisiontreedirectory - Open up the
decisiontree.pyfile - Note the code in this file that will perform the actions required in the “decision-tree” pipeline step
Step 16: Build the decisiontree Docker Image
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/decisiontreedirectory Build the Docker image if locally you are using arm64 (Apple M1)
docker build --platform=linux/amd64 -t <docker_username>/<docker_imagename>:<tag>-amd64 .
- OR build the Docker image if locally you are using amd64
docker build -t <docker_username>/<docker_imagename>:<tag> .
Step 17: Push the decisiontree Docker Image to DockerHub
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/decisiontreedirectory - Push the Docker image if locally you are using arm64 (Apple M1)
docker push <docker_username>/<docker_imagename>:<tag>-amd64
- OR build the Docker image if locally you are using amd64
docker push <docker_username>/<docker_imagename>:<tag>
Step 18: Explore the logisticregression directory
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/logisticregressiondirectory - Open up the
regression.pyfile - Note the code in this file that will perform the actions required in the “regression” pipeline step
Step 19: Build the regression Docker Image
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/logisticregressiondirectory - Build the Docker image if locally you are using arm64 (Apple M1)
docker build --platform=linux/amd64 -t <docker_username>/<docker_imagename>:<tag>-amd64 .
- OR build the Docker image if locally you are using amd64
docker build -t <docker_username>/<docker_imagename>:<tag> .
Step 20: Push the regression Docker Image to DockerHub
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/logisticregressiondirectory - Push the Docker image if locally you are using arm64 (Apple M1)
docker push <docker_username>/<docker_imagename>:<tag>-amd64
- OR build the Docker image if locally you are using amd64
docker push <docker_username>/<docker_imagename>:<tag>
Step 21: Explore the naivebayes directory
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/naivebayesdirectory - Open up the
naivebayes.pyfile Note the code in this file that will perform the actions required in the “bayes” pipeline step
Step 22: Build the naivebayes Docker Image
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/naivebayesdirectory - Build the Docker image if locally you are using arm64 (Apple M1)
docker build --platform=linux/amd64 -t <docker_username>/<docker_imagename>:<tag>-amd64 .
- OR build the Docker image if locally you are using amd64
docker build -t <docker_username>/<docker_imagename>:<tag> .
Step 23: Push the naivebayes Docker Image to DockerHub
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/naivebayesdirectory - Push the Docker image if locally you are using arm64 (Apple M1)
docker push <docker_username>/<docker_imagename>:<tag>-amd64
- OR build the Docker image if locally you are using amd64
docker push <docker_username>/<docker_imagename>:<tag>
Step 24: Explore the randomforest directory
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/randomforestdirectory - Open up the
randomforest.pyfile - Note the code in this file that will perform the actions required in the “random-forest” pipeline step
Step 25: Build the random-forest Docker Image
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/randomforestdirectory - Build the Docker image if locally you are using arm64 (Apple M1)
docker build --platform=linux/amd64 -t <docker_username>/<docker_imagename>:<tag>-amd64 .
- OR build the Docker image if locally you are using amd64
docker build -t <docker_username>/<docker_imagename>:<tag> .
Step 26: Push the random-forest Docker Image to DockerHub
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/randomforestdirectory - Push the Docker image if locally you are using arm64 (Apple M1)
docker push <docker_username>/<docker_imagename>:<tag>-amd64
- OR build the Docker image if locally you are using amd64
docker push <docker_username>/<docker_imagename>:<tag>
Step 27: Explore the svm directory
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/svmdirectory - Open up the
svm.pyfile - Note the code in this file that will perform the actions required in the “svm” pipeline step
Step 28: Build the svm Docker Image
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/svmdirectory - Build the Docker image if locally you are using arm64 (Apple M1)
docker build --platform=linux/amd64 -t <docker_username>/<docker_imagename>:<tag>-amd64 .
- OR build the Docker image if locally you are using amd64
docker build -t <docker_username>/<docker_imagename>:<tag> .
Step 29: Push the svm Docker Image to DockerHub
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/svmdirectory - Push the Docker image if locally you are using arm64 (Apple M1)
docker push <docker_username>/<docker_imagename>:<tag>-amd64
- OR build the Docker image if locally you are using amd64
docker push <docker_username>/<docker_imagename>:<tag>
Step 30: Explore the results directory
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/resultsdirectory - Open up the
result.pyfile - Note the code in this file that will perform the actions required in the “results” pipeline step
Step 31: Build the results Docker Image
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/resultsdirectory - Build the Docker image if locally you are using arm64 (Apple M1)
docker build --platform=linux/amd64 -t <docker_username>/<docker_imagename>:<tag>-amd64 .
- OR build the Docker image if locally you are using amd64
docker build -t <docker_username>/<docker_imagename>:<tag> .
Step 32: Push the results Docker Image to DockerHub
- (Locally) Navigate to the
titanic-kaggle-competition/pipeline-components/resultsdirectory - Push the Docker image if locally you are using arm64 (Apple M1)
docker push <docker_username>/<docker_imagename>:<tag>-amd64
- OR build the Docker image if locally you are using amd64
docker push <docker_username>/<docker_imagename>:<tag>
Step 33: Modify the titanic-kfp.py file
- (Kubeflow as a Service) Navigate to the
titanic-kaggle-competitiondirectory - Update the
titanic-kfp.pywith accurate Docker Image inputs
return dsl.ContainerOp(
name = 'Preprocess Data',
image = '<dockerhub username>/<image name>:<tag>',
—-----
return dsl.ContainerOp(
name='featureengineering',
image = '<dockerhub username>/<image name>:<tag>',
—-----
return dsl.ContainerOp(
name='regression',
image = '<dockerhub username>/<image name>:<tag>',
—-----
return dsl.ContainerOp(
name='bayes',
image = '<dockerhub username>/<image name>:<tag>',
—-----
return dsl.ContainerOp(
name='random_forest',
image = '<dockerhub username>/<image name>:<tag>',
—-----
return dsl.ContainerOp(
name='decision_tree',
image = '<dockerhub username>/<image name>:<tag>',
—-----
return dsl.ContainerOp(
name='svm',
image = '<dockerhub username>/<image name>:<tag>',
—-----
return dsl.ContainerOp(
name='results',
image = '<dockerhub username>/<image name>:<tag>',
Step 34: Generate a KFP Pipeline yaml File
- (Kubeflow as a Service) Navigate to the
titanic-kaggle-competitiondirectory Build a python virtual environment:
Step a) Update pip
python3 -m pip install --upgrade pip
Step b) Install virtualenv
sudo pip3 install virtualenv
Step c) Check the installed version of venv
virtualenv --version
Step d) Name your virtual enviornment as kfp
virtualenv kfp
Step e) Activate your venv.
source kfp/bin/activate
After this virtual environment will get activated. Now in our activated venv we need to install following packages:
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install -y git python3-pip
python3 -m pip install kfp==1.1.2
After installing packages create the yaml file
python3 titanic-kaggle-competition-kfp.py
Download the titanic-kaggle-competition-kfp.yaml file that was created to your local titanic-kaggle-competition directory.
Step 35: Create an Experiment
- (Kubeflow as a Service) Within the Kubeflow Central Dashboard, navigate to the Experiments (KFP) > Create Experiment view
- Name the experiment and click Next
- Click on Experiments (KFP) to view the experiment you just created
Step 36: Create a Pipeline
- (Kubeflow as a Service) Within the Kubeflow Central Dashboard, navigate to the Pipelines > +Upload Pipeline view
- Name the pipeline
- Click on Upload a file
- Upload the local
titanic-kaggle-competition-kfp.yamlfile - Click Create
Step 37: Create a Run
- (Kubeflow as a Service) Click on Create Run in the view from the previous step
- Choose the experiment we created in Step 35
- Click Start
- Click on the run name to view the runtime execution graph
Troubleshooting Tips:
While running the pipeline as mentioned above you may come across this error: errorlog:
kaggle.rest.ApiException: (403)
Reason: Forbidden
HTTP response headers: HTTPHeaderDict({'Content-Type': 'application/json', 'Date': 'Thu, 23 Jun 2022 11:31:18 GMT', 'Access-Control-Allow-Credentials': 'true', 'Set-Cookie': 'ka_sessionid=6817a347c75399a531148e19cad0aaeb; max-age=2626560; path=/, GCLB=CIGths3--ebbUg; path=/; HttpOnly', 'Transfer-Encoding': 'chunked', 'Vary':
HTTP response body: b'{"code":403,"message":"You must accept this competition\\u0027s rules before you\\u0027ll be able to download files."}'
This error occours for two reasons:
- Your Kaggle account is not verified with your phone number.
- Rules for this specific competitions are not accepted.
A solution to this is please verify your Kaggle account using your phone number and accept the rules for this specific competition, untill these two steps are satisfied pipeline wont accquire data from Kaggle API and it wont run.
