pipelines/components/aws/sagemaker
dependabot[bot] 2b94ee6101
chore(deps): bump sagemaker from 2.1.0 to 2.237.3 in /components/aws/sagemaker (#11876)
Bumps [sagemaker](https://github.com/aws/sagemaker-python-sdk) from 2.1.0 to 2.237.3.
- [Release notes](https://github.com/aws/sagemaker-python-sdk/releases)
- [Changelog](https://github.com/aws/sagemaker-python-sdk/blob/master/CHANGELOG.md)
- [Commits](https://github.com/aws/sagemaker-python-sdk/compare/v2.1.0...v2.237.3)

---
updated-dependencies:
- dependency-name: sagemaker
  dependency-version: 2.237.3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-04-30 12:06:04 +00:00
..
DataQualityJobDefinition feat(components): SageMaker V2 model monitor component release (#9368) 2023-05-09 22:26:42 +00:00
Endpoint feat(components): SageMaker V2 model monitor component release (#9368) 2023-05-09 22:26:42 +00:00
EndpointConfig feat(components): SageMaker V2 model monitor component release (#9368) 2023-05-09 22:26:42 +00:00
ModelBiasJobDefinition feat(components): SageMaker V2 model monitor component release (#9368) 2023-05-09 22:26:42 +00:00
ModelExplainabilityJobDefinition feat(components): SageMaker V2 model monitor component release (#9368) 2023-05-09 22:26:42 +00:00
ModelQualityJobDefinition feat(components): SageMaker V2 model monitor component release (#9368) 2023-05-09 22:26:42 +00:00
Modelv2 feat(components): SageMaker V2 model monitor component release (#9368) 2023-05-09 22:26:42 +00:00
MonitoringSchedule feat(components): SageMaker V2 model monitor component release (#9368) 2023-05-09 22:26:42 +00:00
TrainingJob chore(deps): bump sagemaker from 2.1.0 to 2.237.3 in /components/aws/sagemaker/TrainingJob/samples/mnist-kmeans-training (#11847) 2025-04-22 13:26:31 +00:00
batch_transform fix(components): make inputs.model_artifact_url optional in sagemaker model component (#8336) 2022-10-14 22:12:49 +00:00
codebuild test(Component): push test stats to cloudwatch (#9130) 2023-04-11 18:29:55 +00:00
common chore(components): Update scripts to use public ecr instead of docker (#8264) 2022-09-15 02:16:40 +00:00
commonv2 feat(components): Sagemaker V2 Hosting components and tests (#9243) 2023-05-03 17:56:15 +00:00
create_simulation_app fix(components): make inputs.model_artifact_url optional in sagemaker model component (#8336) 2022-10-14 22:12:49 +00:00
delete_simulation_app fix(components): make inputs.model_artifact_url optional in sagemaker model component (#8336) 2022-10-14 22:12:49 +00:00
deploy fix(components): make inputs.model_artifact_url optional in sagemaker model component (#8336) 2022-10-14 22:12:49 +00:00
ground_truth fix(components): make inputs.model_artifact_url optional in sagemaker model component (#8336) 2022-10-14 22:12:49 +00:00
hyperparameter_tuning fix(components): make inputs.model_artifact_url optional in sagemaker model component (#8336) 2022-10-14 22:12:49 +00:00
model fix(components): make inputs.model_artifact_url optional in sagemaker model component (#8336) 2022-10-14 22:12:49 +00:00
process fix(components): make inputs.model_artifact_url optional in sagemaker model component (#8336) 2022-10-14 22:12:49 +00:00
rlestimator fix(components): make inputs.model_artifact_url optional in sagemaker model component (#8336) 2022-10-14 22:12:49 +00:00
simulation_job fix(components): make inputs.model_artifact_url optional in sagemaker model component (#8336) 2022-10-14 22:12:49 +00:00
simulation_job_batch fix(components): make inputs.model_artifact_url optional in sagemaker model component (#8336) 2022-10-14 22:12:49 +00:00
tests test(components): Reduce sagemaker component test flakiness (#10225) 2024-02-14 19:29:10 +00:00
train fix(components): make inputs.model_artifact_url optional in sagemaker model component (#8336) 2022-10-14 22:12:49 +00:00
workteam fix(components): make inputs.model_artifact_url optional in sagemaker model component (#8336) 2022-10-14 22:12:49 +00:00
.dockerignore refactor(components): Open sourcing v2 AWS TrainingJob component. (#8258) 2022-09-16 22:07:45 +00:00
.gitignore refactor(components): AWS SageMaker - Full component refactoring (#4336) 2020-10-27 14:17:57 -07:00
CONTRIBUTING.md refactor(components): AWS SageMaker - Full component refactoring (#4336) 2020-10-27 14:17:57 -07:00
Changelog.md chore(doc): Update Changelog.md (#9452) 2023-05-18 16:55:07 +00:00
Dockerfile chore(components): Update scripts to use public ecr instead of docker (#8264) 2022-09-15 02:16:40 +00:00
LICENSE.txt AWS sagemaker : Added license files and updated Dockerfile to use AmazonLinux (#3397) 2020-04-06 20:55:43 -07:00
NOTICE.txt AWS sagemaker : Added license files and updated Dockerfile to use AmazonLinux (#3397) 2020-04-06 20:55:43 -07:00
OWNERS chore(components): Update aws owners files to reflect current owners (#8622) 2022-12-22 22:29:14 +00:00
README.md docs(components): Update Sagemaker Component Readme (#9417) 2023-05-19 16:53:47 +00:00
THIRD-PARTY-LICENSES.txt fix(components): make inputs.model_artifact_url optional in sagemaker model component (#8336) 2022-10-14 22:12:49 +00:00
THIRD-PARTY-LICENSES.v2.txt feat(components): SageMaker V2 model monitor component release (#9368) 2023-05-09 22:26:42 +00:00
dev_requirements.txt chore: update aws sagemaker components tests to kfp 1.7.0 (#6805) 2021-10-27 11:08:25 -07:00
requirements.txt chore(deps): bump sagemaker from 2.1.0 to 2.237.3 in /components/aws/sagemaker (#11876) 2025-04-30 12:06:04 +00:00
requirements_v2.txt feat(components): Sagemaker V2 Hosting components and tests (#9243) 2023-05-03 17:56:15 +00:00
v2.Dockerfile refactor(components): Open sourcing v2 AWS TrainingJob component. (#8258) 2022-09-16 22:07:45 +00:00
v2.Dockerfile.dockerignore refactor(components): Open sourcing v2 AWS TrainingJob component. (#8258) 2022-09-16 22:07:45 +00:00

README.md

Amazon SageMaker Components for Kubeflow Pipelines

Summary

With Amazon SageMaker Components for Kubeflow Pipelines (KFP), you can create and monitor training, tuning, endpoint deployment, and batch transform jobs in Amazon SageMaker. By running Kubeflow Pipeline jobs on Amazon SageMaker, you move data processing and training jobs from the Kubernetes cluster to Amazon SageMakers machine learning-optimized managed service. The job parameters, status, and outputs from Amazon SageMaker are still accessible from the Kubeflow Pipelines UI.

Components

Amazon SageMaker Components for Kubeflow Pipelines offer an alternative to launching compute-intensive jobs in Kubernetes and integrate the orchestration benefits of Kubeflow Pipelines. The following Amazon SageMaker components have been created to integrate key SageMaker features into your ML workflows from preparing data, to building, training, and deploying ML models. You can create a Kubeflow Pipeline built entirely using these components, or integrate individual components into your workflow as needed. The components are available in one or two versions. Each version of a component leverages a different backend. For more information on those versions, see SageMaker Components for Kubeflow Pipelines versions.

For an end-to-end tutorial using these components, see Using Amazon SageMaker Components.

For more example pipelines, see Sample AWS SageMaker Kubeflow Pipelines.

There is no additional charge for using Amazon SageMaker Components for Kubeflow Pipelines. You incur charges for any Amazon SageMaker resources you use through these components.

List of Components

Note: We encourage users to utilize Version 2 of a SageMaker component wherever it is available. You can find the version of an AWS SageMaker Components in the docker image tag used in the component specification file component.yaml.

Ground Truth components

Data processing components

Training components

Inference components

RoboMaker components