* Generate using updated generator * Update license version * Update container image version * Update Changelog.md * Update changelog * Update Changelog.md |
||
---|---|---|
.. | ||
src | ||
README.md | ||
component.yaml |
README.md
SageMaker Endpoint Config Kubeflow Pipelines component v2
Overview
EndpointConfig is one of the three components(along with Endpoint and Model) you would use to create a Hosting deployment on Sagemaker.
Component to create SageMaker Endpoint Configurations in a Kubeflow Pipelines workflow.
See the SageMaker Components for Kubeflow Pipelines versions section in SageMaker Components for Kubeflow Pipelines to learn about the differences between the version 1 and version 2 components.
Kubeflow Pipelines backend compatibility
SageMaker components are currently supported with Kubeflow pipelines backend v1. This means, you will have to use KFP sdk 1.8.x to create your pipelines.
Getting Started
Follow this guide to setup the prerequisites for Endpoint Config depending on your deployment.
Inputs Parameters
Find the high level component input parameters and their description in the component's input specification. The parameters with JsonObject
or JsonArray
type inputs have nested fields, you will have to refer to the EndpointConfig CRD specification for the respective structure and pass the input in JSON format.
A quick way to see the converted JSON style input is to copy the sample EndpointConfig spec and convert it to JSON using a YAML to JSON converter like this website.
For e.g. the productionVariants
in the EndpointConfig
CRD looks like:
productionVariants:
- acceleratorType: string
containerStartupHealthCheckTimeoutInSeconds: integer
coreDumpConfig:
destinationS3URI: string
kmsKeyID: string
enableSSMAccess: boolean
initialInstanceCount: integer
initialVariantWeight: number
instanceType: string
modelDataDownloadTimeoutInSeconds: integer
modelName: string
serverlessConfig:
maxConcurrency: integer
memorySizeInMB: integer
variantName: string
volumeSizeInGB: integer
The productionVariants
input for the component would be (not all parameters are included):
productionVariants = [
{
"initialInstanceCount": 1,
"instanceType": "ml.m5.large",
"modelName": "<my model>",
"variantName": "<my variant>",
"volumeSizeInGB": 10
}
]
You might also want to look at the EndpointConfig API reference for a detailed explaination of parameters.