pipelines/components/aws/sagemaker/tests/integration_tests/scripts/kmeans_preprocessing.py

30 lines
1005 B
Python

import pickle
import gzip
import numpy
import io
from sagemaker.amazon.common import write_numpy_to_dense_tensor
print("Extracting MNIST data set")
# Load the dataset
with gzip.open("/opt/ml/processing/input/mnist.pkl.gz", "rb") as f:
train_set, valid_set, test_set = pickle.load(f, encoding="latin1")
# process the data
# Convert the training data into the format required by the SageMaker KMeans algorithm
print("Writing training data")
with open("/opt/ml/processing/output_train/train_data", "wb") as train_file:
write_numpy_to_dense_tensor(train_file, train_set[0], train_set[1])
print("Writing test data")
with open("/opt/ml/processing/output_test/test_data", "wb") as test_file:
write_numpy_to_dense_tensor(test_file, test_set[0], test_set[1])
print("Writing validation data")
# Convert the valid data into the format required by the SageMaker KMeans algorithm
numpy.savetxt(
"/opt/ml/processing/output_valid/valid-data.csv",
valid_set[0],
delimiter=",",
fmt="%g",
)