* Add model monitor component and integration tests
* Generate model monitor using updated generator
* Add sleep for monitoring schedule
* Update requirements v2
* Change model monitor image url
* minor fix
* minor fix
* minor fix
* Add unit testing for MonitoringSchedule
* Delete assume-role.json
* Add doc and sample pipeline for Monitoring Schedule
* Regenerate using the latest code generator.
Make parameter description 1 sentence long.
* Revert "Add doc and sample pipeline for Monitoring Schedule"
This reverts commit
|
||
---|---|---|
.. | ||
tests | ||
.gitignore | ||
Dockerfile | ||
README.md | ||
check_formatting.sh | ||
check_generated_specifications.sh | ||
pytest.ini | ||
run_automated_test.sh | ||
run_unit_tests.sh |
README.md
Unit tests for AWS SageMaker KFP Components
How to run these tests
Method 1 : Run these tests using docker
- Clone the git repo
git clone https://github.com/kubeflow/pipelines.git
- Build the dockerfile
cd pipelines docker build . -f ./components/aws/sagemaker/tests/unit_tests/Dockerfile -t amazon/unit-test-aws-sagemaker-kfp-components
- Run all unit tests
This runs the tests against a mounted volume from your host machine. This means you can edit the files and rerun the tests immediately without having to rebuild the docker container.docker run -it -v <path_to_this_repo_on_your_machine>:/app/ amazon/unit-test-aws-sagemaker-kfp-components:latest
Method 2 : Run these tests locally
- Clone the git repo
git clone https://github.com/kubeflow/pipelines.git
- Install the pip packages required for testing
cd pipelines/components/aws/sagemaker/ pip install -r requirements.txt
- Run all unit tests
cd tests/unit_tests/ ./run_unit_tests.sh