pipelines/samples/v2/pipeline_with_importer_test.py

103 lines
3.5 KiB
Python

# Copyright 2021 The Kubeflow Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Hello world v2 engine pipeline."""
from __future__ import annotations
import unittest
from kfp.samples.test.utils import KfpTask
from kfp.samples.test.utils import run_pipeline_func
from kfp.samples.test.utils import TestCase
import kfp_server_api
from ml_metadata.proto import Execution
from .pipeline_with_importer import pipeline_with_importer
def verify(t: unittest.TestCase, run: kfp_server_api.ApiRun,
tasks: dict[str, KfpTask], **kwargs):
t.assertEqual(run.status, 'Succeeded')
t.assertCountEqual(['importer', 'train'], tasks.keys(), 'task names')
importer = tasks['importer']
train = tasks['train']
t.assertEqual(
'gs://ml-pipeline-playground/shakespeare1.txt',
importer.outputs.artifacts[0].uri,
'output artifact uri of importer should be "gs://ml-pipeline-playground/shakespeare1.txt"'
)
t.assertEqual(
'gs://ml-pipeline-playground/shakespeare1.txt',
train.inputs.artifacts[0].uri,
'input artifact uri of train should be "gs://ml-pipeline-playground/shakespeare1.txt"'
)
importer_dict = importer.get_dict()
train_dict = train.get_dict()
for artifact in importer_dict.get('outputs').get('artifacts'):
# pop metadata here because the artifact which got re-imported may have metadata with uncertain data
if artifact.get('metadata') is not None:
artifact.pop('metadata')
for artifact in train_dict.get('inputs').get('artifacts'):
# pop metadata here because the artifact which got re-imported may have metadata with uncertain data
if artifact.get('metadata') is not None:
artifact.pop('metadata')
t.assertEqual(
{
'name': 'importer',
'inputs': {},
'outputs': {
'artifacts': [{
'name': 'artifact',
'type': 'system.Dataset',
}],
},
'type': 'system.ImporterExecution',
'state': Execution.State.COMPLETE,
}, importer_dict)
t.assertEqual(
{
'name': 'train',
'inputs': {
'artifacts': [{
'name': 'dataset',
'type': 'system.Dataset'
}],
},
'outputs': {
'artifacts': [{
'metadata': {
'display_name': 'model'
},
'name': 'model',
'type': 'system.Model'
}],
'parameters': {
'scalar': '123'
}
},
'type': 'system.ContainerExecution',
'state': Execution.State.COMPLETE,
}, train_dict)
if __name__ == '__main__':
run_pipeline_func([
TestCase(
pipeline_func=pipeline_with_importer,
verify_func=verify,
),
])