pipelines/samples/contrib/openvino/predict/numpy_predict.py

38 lines
1.3 KiB
Python

import kfp.dsl as dsl
@dsl.pipeline(
name='Prediction pipeline',
description='Execute prediction operation for the dataset from numpy file and test accuracy and latency'
)
def openvino_predict(
model_bin='gs://intelai_public_models/resnet_50_i8/1/resnet_50_i8.bin',
model_xml='gs://intelai_public_models/resnet_50_i8/1/resnet_50_i8.xml',
generated_model_dir='gs://your-bucket/folder',
input_numpy_file='gs://intelai_public_models/images/imgs.npy',
label_numpy_file='gs://intelai_public_models/images/lbs.npy',
batch_size=1,
scale_div=1,
scale_sub=0
):
"""A one-step pipeline."""
dsl.ContainerOp(
name='openvino-predict',
image='gcr.io/constant-cubist-173123/inference_server/ml_predict:5',
command=['python3', 'predict.py'],
arguments=[
'--model_bin', model_bin,
'--model_xml', model_xml,
'--input_numpy_file', input_numpy_file,
'--label_numpy_file', label_numpy_file,
'--batch_size', batch_size,
'--scale_div', scale_div,
'--scale_sub', scale_sub,
'--output_folder', generated_model_dir],
file_outputs={})
if __name__ == '__main__':
import kfp.compiler as compiler
compiler.Compiler().compile(openvino_predict, __file__ + '.tar.gz')