pipelines/components/deprecated/tfx/Transform/component.py

133 lines
5.5 KiB
Python

# flake8: noqa TODO
from kfp.components import InputPath, OutputPath
def Transform(
examples_path: InputPath('Examples'),
schema_path: InputPath('Schema'),
transform_graph_path: OutputPath('TransformGraph'),
transformed_examples_path: OutputPath('Examples'),
module_file: str = None,
preprocessing_fn: str = None,
custom_config: dict = None,
):
"""A TFX component to transform the input examples.
The Transform component wraps TensorFlow Transform (tf.Transform) to
preprocess data in a TFX pipeline. This component will load the
preprocessing_fn from input module file, preprocess both 'train' and 'eval'
splits of input examples, generate the `tf.Transform` output, and save both
transform function and transformed examples to orchestrator desired locations.
## Providing a preprocessing function
The TFX executor will use the estimator provided in the `module_file` file
to train the model. The Transform executor will look specifically for the
`preprocessing_fn()` function within that file.
An example of `preprocessing_fn()` can be found in the [user-supplied
code]((https://github.com/tensorflow/tfx/blob/master/tfx/examples/chicago_taxi_pipeline/taxi_utils.py))
of the TFX Chicago Taxi pipeline example.
Args:
examples: A Channel of 'Examples' type (required). This should
contain the two splits 'train' and 'eval'.
schema: A Channel of 'SchemaPath' type. This should contain a single
schema artifact.
module_file: The file path to a python module file, from which the
'preprocessing_fn' function will be loaded. The function must have the
following signature.
def preprocessing_fn(inputs: Dict[Text, Any]) -> Dict[Text, Any]:
...
where the values of input and returned Dict are either tf.Tensor or
tf.SparseTensor. Exactly one of 'module_file' or 'preprocessing_fn'
must be supplied.
preprocessing_fn: The path to python function that implements a
'preprocessing_fn'. See 'module_file' for expected signature of the
function. Exactly one of 'module_file' or 'preprocessing_fn' must
be supplied.
Returns:
transform_graph: Optional output 'TransformPath' channel for output of
'tf.Transform', which includes an exported Tensorflow graph suitable for
both training and serving;
transformed_examples: Optional output 'ExamplesPath' channel for
materialized transformed examples, which includes both 'train' and
'eval' splits.
Raises:
ValueError: When both or neither of 'module_file' and 'preprocessing_fn'
is supplied.
"""
from tfx.components.transform.component import Transform
component_class = Transform
#Generated code
import json
import os
import tensorflow
from google.protobuf import json_format, message
from tfx.types import Artifact, channel_utils, artifact_utils
arguments = locals().copy()
component_class_args = {}
for name, execution_parameter in component_class.SPEC_CLASS.PARAMETERS.items():
argument_value_obj = argument_value = arguments.get(name, None)
if argument_value is None:
continue
parameter_type = execution_parameter.type
if isinstance(parameter_type, type) and issubclass(parameter_type, message.Message): # Maybe FIX: execution_parameter.type can also be a tuple
argument_value_obj = parameter_type()
json_format.Parse(argument_value, argument_value_obj)
component_class_args[name] = argument_value_obj
for name, channel_parameter in component_class.SPEC_CLASS.INPUTS.items():
artifact_path = arguments[name + '_path']
if artifact_path:
artifact = channel_parameter.type()
artifact.uri = artifact_path + '/' # ?
if channel_parameter.type.PROPERTIES and 'split_names' in channel_parameter.type.PROPERTIES:
# Recovering splits
subdirs = tensorflow.io.gfile.listdir(artifact_path)
artifact.split_names = artifact_utils.encode_split_names(sorted(subdirs))
component_class_args[name] = channel_utils.as_channel([artifact])
component_class_instance = component_class(**component_class_args)
input_dict = {name: channel.get() for name, channel in component_class_instance.inputs.get_all().items()}
output_dict = {name: channel.get() for name, channel in component_class_instance.outputs.get_all().items()}
exec_properties = component_class_instance.exec_properties
# Generating paths for output artifacts
for name, artifacts in output_dict.items():
base_artifact_path = arguments[name + '_path']
# Are there still cases where output channel has multiple artifacts?
for idx, artifact in enumerate(artifacts):
subdir = str(idx + 1) if idx > 0 else ''
artifact.uri = os.path.join(base_artifact_path, subdir) # Ends with '/'
print('component instance: ' + str(component_class_instance))
#executor = component_class.EXECUTOR_SPEC.executor_class() # Same
executor = component_class_instance.executor_spec.executor_class()
executor.Do(
input_dict=input_dict,
output_dict=output_dict,
exec_properties=exec_properties,
)
if __name__ == '__main__':
import kfp
kfp.components.func_to_container_op(
Transform,
base_image='tensorflow/tfx:0.21.4',
output_component_file='component.yaml'
)