pipelines/samples/basic
Ning c34c426441
typo (#1385)
2019-05-28 12:16:27 -07:00
..
README.md Pointed doc links to Kubeflow website instead of wiki. (#398) 2018-11-27 17:59:49 -08:00
artifact_location.py [kfp sdk] Added examples for ArtifactLocation, ResourceOp, VolumeOp, and Sidecar. (#1338) 2019-05-16 18:29:29 -07:00
condition.py Updated the "Basic - Conditional" sample (#1108) 2019-04-18 19:17:54 -07:00
exit_handler.py Updated the "Basic - Exit handler" sample (#1109) 2019-04-11 18:36:45 -07:00
immediate_value.py dsl generate zip file (#855) 2019-03-26 15:14:50 -07:00
parallel_join.py Updated the "Basic - Parallel execution" sample (#1110) 2019-04-18 20:15:55 -07:00
recursion.py Updated the "Basic - Recursive loop" sample (#1113) 2019-04-18 22:01:55 -07:00
retry.py typo (#1385) 2019-05-28 12:16:27 -07:00
sequential.py Updated the "Basic - Sequential execution" sample (#1112) 2019-04-18 21:07:53 -07:00
sidecar.py [kfp sdk] Added examples for ArtifactLocation, ResourceOp, VolumeOp, and Sidecar. (#1338) 2019-05-16 18:29:29 -07:00

README.md

This page tells you how to use the basic sample pipelines contained in the repo.

Compile the pipeline specification

Follow the guide to building a pipeline to install the Kubeflow Pipelines SDK and compile the sample Python into a workflow specification. The specification takes the form of a YAML file compressed into a .tar.gz file.

For convenience, you can download a pre-compiled, compressed YAML file containing the specification of the sequential.py pipeline. This saves you the steps required to compile and compress the pipeline specification: sequential.tar.gz

Deploy

Open the Kubeflow pipelines UI, and follow the prompts to create a new pipeline and upload the generated workflow specification, my-pipeline.tar.gz (example: sequential.tar.gz).

Run

Follow the pipeline UI to create pipeline runs.

Useful parameter values:

  • For the "exit_handler" and "sequential" samples: gs://ml-pipeline-playground/shakespeare1.txt
  • For the "parallel_join" sample: gs://ml-pipeline-playground/shakespeare1.txt and gs://ml-pipeline-playground/shakespeare2.txt

Components source

All samples use pre-built components. The command to run for each container is built into the pipeline file.