pipelines/test/sample-test/run_sample_test.py

166 lines
6.6 KiB
Python

# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tarfile
import utils
import yamale
import yaml
from datetime import datetime
from kfp import Client
from constants import CONFIG_DIR, DEFAULT_CONFIG, SCHEMA_CONFIG
class PySampleChecker(object):
def __init__(self, testname, input, output, result, namespace='kubeflow'):
"""Util class for checking python sample test running results.
:param testname: test name.
:param input: The path of a pipeline file that will be submitted.
:param output: The path of the test output.
:param result: The path of the test result that will be exported.
:param namespace: namespace of the deployed pipeline system. Default: kubeflow
"""
self._testname = testname
self._input = input
self._output = output
self._result = result
self._namespace = namespace
self._run_pipeline = None
self._test_timeout = None
self._test_cases = []
self._test_name = self._testname + ' Sample Test'
self._client = None
self._experiment_id = None
self._job_name = None
self._test_args = None
self._run_id = None
def run(self):
"""Run compiled KFP pipeline."""
###### Initialization ######
host = 'ml-pipeline.%s.svc.cluster.local:8888' % self._namespace
self._client = Client(host=host)
###### Check Input File ######
utils.add_junit_test(self._test_cases, 'input generated yaml file',
os.path.exists(self._input), 'yaml file is not generated')
if not os.path.exists(self._input):
utils.write_junit_xml(self._test_name, self._result, self._test_cases)
print('Error: job not found.')
exit(1)
###### Create Experiment ######
experiment_name = self._testname + ' sample experiment'
response = self._client.create_experiment(experiment_name)
self._experiment_id = response.id
utils.add_junit_test(self._test_cases, 'create experiment', True)
###### Create Job ######
self._job_name = self._testname + '_sample'
###### Figure out arguments from associated config files. #######
self._test_args = {}
config_schema = yamale.make_schema(SCHEMA_CONFIG)
try:
with open(DEFAULT_CONFIG, 'r') as f:
raw_args = yaml.safe_load(f)
default_config = yamale.make_data(DEFAULT_CONFIG)
yamale.validate(config_schema, default_config) # If fails, a ValueError will be raised.
except yaml.YAMLError as yamlerr:
raise RuntimeError('Illegal default config:{}'.format(yamlerr))
except OSError as ose:
raise FileExistsError('Default config not found:{}'.format(ose))
else:
self._test_timeout = raw_args['test_timeout']
self._run_pipeline = raw_args['run_pipeline']
try:
config_file = os.path.join(CONFIG_DIR, '%s.config.yaml' % self._testname)
with open(config_file, 'r') as f:
raw_args = yaml.safe_load(f)
test_config = yamale.make_data(config_file)
yamale.validate(config_schema, test_config) # If fails, a ValueError will be raised.
except yaml.YAMLError as yamlerr:
print('No legit yaml config file found, use default args:{}'.format(yamlerr))
except OSError as ose:
print('Config file with the same name not found, use default args:{}'.format(ose))
else:
if 'arguments' in raw_args.keys() and raw_args['arguments']:
self._test_args.update(raw_args['arguments'])
if 'output' in self._test_args.keys(): # output is a special param that has to be specified dynamically.
self._test_args['output'] = self._output
if 'test_timeout' in raw_args.keys():
self._test_timeout = raw_args['test_timeout']
if 'run_pipeline' in raw_args.keys():
self._run_pipeline = raw_args['run_pipeline']
# Submit for pipeline running.
if self._run_pipeline:
response = self._client.run_pipeline(self._experiment_id, self._job_name, self._input, self._test_args)
self._run_id = response.id
utils.add_junit_test(self._test_cases, 'create pipeline run', True)
def check(self):
"""Check pipeline run results."""
if self._run_pipeline:
###### Monitor Job ######
try:
start_time = datetime.now()
response = self._client.wait_for_run_completion(self._run_id, self._test_timeout)
succ = (response.run.status.lower() == 'succeeded')
end_time = datetime.now()
elapsed_time = (end_time - start_time).seconds
utils.add_junit_test(self._test_cases, 'job completion', succ,
'waiting for job completion failure', elapsed_time)
finally:
###### Output Argo Log for Debugging ######
workflow_json = self._client._get_workflow_json(self._run_id)
workflow_id = workflow_json['metadata']['name']
argo_log, _ = utils.run_bash_command('argo logs -n {} -w {}'.format(
self._namespace, workflow_id))
print('=========Argo Workflow Log=========')
print(argo_log)
if not succ:
utils.write_junit_xml(self._test_name, self._result, self._test_cases)
exit(1)
###### Validate the results for specific test cases ######
#TODO: Add result check for tfx-cab-classification after launch.
if self._testname == 'xgboost_training_cm':
# For xgboost sample, check its confusion matrix.
cm_tar_path = './confusion_matrix.tar.gz'
utils.get_artifact_in_minio(workflow_json, 'confusion-matrix', cm_tar_path,
'mlpipeline-ui-metadata')
with tarfile.open(cm_tar_path) as tar_handle:
file_handles = tar_handle.getmembers()
assert len(file_handles) == 1
with tar_handle.extractfile(file_handles[0]) as f:
cm_data = f.read()
utils.add_junit_test(self._test_cases, 'confusion matrix format',
(len(cm_data) > 0),
'the confusion matrix file is empty')
###### Delete Job ######
#TODO: add deletion when the backend API offers the interface.
###### Write out the test result in junit xml ######
utils.write_junit_xml(self._test_name, self._result, self._test_cases)