pipelines/components/gcp/ml_engine/batch_predict/sample.ipynb

310 lines
11 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Name\n",
"\n",
"Batch prediction using Cloud Machine Learning Engine\n",
"\n",
"\n",
"# Label\n",
"\n",
"Cloud Storage, Cloud ML Engine, Kubeflow, Pipeline, Component\n",
"\n",
"\n",
"# Summary\n",
"\n",
"A Kubeflow Pipeline component to submit a batch prediction job against a deployed model on Cloud ML Engine.\n",
"\n",
"\n",
"# Details\n",
"\n",
"\n",
"## Intended use\n",
"\n",
"Use the component to run a batch prediction job against a deployed model on Cloud ML Engine. The prediction output is stored in a Cloud Storage bucket.\n",
"\n",
"\n",
"## Runtime arguments\n",
"\n",
"| Argument | Description | Optional | Data type | Accepted values | Default |\n",
"|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|-----------------|---------|\n",
"| project_id | The ID of the Google Cloud Platform (GCP) project of the job. | No | GCPProjectID | | |\n",
"| model_path | The path to the model. It can be one of the following:<br/> <ul> <li>projects/[PROJECT_ID]/models/[MODEL_ID]</li> <li>projects/[PROJECT_ID]/models/[MODEL_ID]/versions/[VERSION_ID]</li> <li>The path to a Cloud Storage location containing a model file.</li> </ul> | No | GCSPath | | |\n",
"| input_paths | The path to the Cloud Storage location containing the input data files. It can contain wildcards, for example, `gs://foo/*.csv` | No | List | GCSPath | |\n",
"| input_data_format | The format of the input data files. See [REST Resource: projects.jobs](https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs#DataFormat) for more details. | No | String | DataFormat | |\n",
"| output_path | The path to the Cloud Storage location for the output data. | No | GCSPath | | |\n",
"| region | The Compute Engine region where the prediction job is run. | No | GCPRegion | | |\n",
"| output_data_format | The format of the output data files. See [REST Resource: projects.jobs](https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs#DataFormat) for more details. | Yes | String | DataFormat | JSON |\n",
"| prediction_input | The JSON input parameters to create a prediction job. See [PredictionInput](https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs#PredictionInput) for more information. | Yes | Dict | | None |\n",
"| job_id_prefix | The prefix of the generated job id. | Yes | String | | None |\n",
"| wait_interval | The number of seconds to wait in case the operation has a long run time. | Yes | | | 30 |\n",
"\n",
"\n",
"## Input data schema\n",
"\n",
"The component accepts the following as input:\n",
"\n",
"* A trained model: It can be a model file in Cloud Storage, a deployed model, or a version in Cloud ML Engine. Specify the path to the model in the `model_path `runtime argument.\n",
"* Input data: The data used to make predictions against the trained model. The data can be in [multiple formats](https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs#DataFormat). The data path is specified by `input_paths` and the format is specified by `input_data_format`.\n",
"\n",
"## Output\n",
"Name | Description | Type\n",
":--- | :---------- | :---\n",
"job_id | The ID of the created batch job. | String\n",
"output_path | The output path of the batch prediction job | GCSPath\n",
"\n",
"\n",
"## Cautions & requirements\n",
"\n",
"To use the component, you must:\n",
"\n",
"* Set up a cloud environment by following this [guide](https://cloud.google.com/ml-engine/docs/tensorflow/getting-started-training-prediction#setup).\n",
"* The component can authenticate to GCP. Refer to [Authenticating Pipelines to GCP](https://www.kubeflow.org/docs/gke/authentication-pipelines/) for details.\n",
"* Grant the following types of access to the Kubeflow user service account:\n",
" * Read access to the Cloud Storage buckets which contains the input data.\n",
" * Write access to the Cloud Storage bucket of the output directory.\n",
"\n",
"\n",
"## Detailed description\n",
"\n",
"Follow these steps to use the component in a pipeline:\n",
"\n",
"\n",
"\n",
"1. Install the Kubeflow Pipeline SDK:\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%capture --no-stderr\n",
"\n",
"!pip3 install kfp --upgrade"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"2. Load the component using KFP SDK"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import kfp.components as comp\n",
"\n",
"mlengine_batch_predict_op = comp.load_component_from_url(\n",
" 'https://raw.githubusercontent.com/kubeflow/pipelines/1.6.0/components/gcp/ml_engine/batch_predict/component.yaml')\n",
"help(mlengine_batch_predict_op)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"### Sample Code\n",
"Note: The following sample code works in an IPython notebook or directly in Python code. \n",
"\n",
"In this sample, you batch predict against a pre-built trained model from `gs://ml-pipeline-playground/samples/ml_engine/census/trained_model/` and use the test data from `gs://ml-pipeline-playground/samples/ml_engine/census/test.json`.\n",
"\n",
"#### Inspect the test data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!gsutil cat gs://ml-pipeline-playground/samples/ml_engine/census/test.json"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Set sample parameters"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"parameters"
]
},
"outputs": [],
"source": [
"# Required Parameters\n",
"PROJECT_ID = '<Please put your project ID here>'\n",
"GCS_WORKING_DIR = 'gs://<Please put your GCS path here>' # No ending slash"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Optional Parameters\n",
"EXPERIMENT_NAME = 'CLOUDML - Batch Predict'\n",
"OUTPUT_GCS_PATH = GCS_WORKING_DIR + '/batch_predict/output/'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Example pipeline that uses the component"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import kfp.dsl as dsl\n",
"import json\n",
"@dsl.pipeline(\n",
" name='CloudML batch predict pipeline',\n",
" description='CloudML batch predict pipeline'\n",
")\n",
"def pipeline(\n",
" project_id = PROJECT_ID, \n",
" model_path = 'gs://ml-pipeline-playground/samples/ml_engine/census/trained_model/', \n",
" input_paths = '[\"gs://ml-pipeline-playground/samples/ml_engine/census/test.json\"]', \n",
" input_data_format = 'JSON', \n",
" output_path = OUTPUT_GCS_PATH, \n",
" region = 'us-central1', \n",
" output_data_format='', \n",
" prediction_input = json.dumps({\n",
" 'runtimeVersion': '1.10'\n",
" }), \n",
" job_id_prefix='',\n",
" wait_interval='30'):\n",
" mlengine_batch_predict_op(\n",
" project_id=project_id, \n",
" model_path=model_path, \n",
" input_paths=input_paths, \n",
" input_data_format=input_data_format, \n",
" output_path=output_path, \n",
" region=region, \n",
" output_data_format=output_data_format, \n",
" prediction_input=prediction_input, \n",
" job_id_prefix=job_id_prefix,\n",
" wait_interval=wait_interval)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Compile the pipeline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pipeline_func = pipeline\n",
"pipeline_filename = pipeline_func.__name__ + '.zip'\n",
"import kfp.compiler as compiler\n",
"compiler.Compiler().compile(pipeline_func, pipeline_filename)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Submit the pipeline for execution"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Specify pipeline argument values\n",
"arguments = {}\n",
"\n",
"#Get or create an experiment and submit a pipeline run\n",
"import kfp\n",
"client = kfp.Client()\n",
"experiment = client.create_experiment(EXPERIMENT_NAME)\n",
"\n",
"#Submit a pipeline run\n",
"run_name = pipeline_func.__name__ + ' run'\n",
"run_result = client.run_pipeline(experiment.id, run_name, pipeline_filename, arguments)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Inspect prediction results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"OUTPUT_FILES_PATTERN = OUTPUT_GCS_PATH + '*'\n",
"!gsutil cat OUTPUT_FILES_PATTERN"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## References\n",
"* [Component python code](https://github.com/kubeflow/pipelines/blob/master/components/gcp/container/component_sdk/python/kfp_component/google/ml_engine/_batch_predict.py)\n",
"* [Component docker file](https://github.com/kubeflow/pipelines/blob/master/components/gcp/container/Dockerfile)\n",
"* [Sample notebook](https://github.com/kubeflow/pipelines/blob/master/components/gcp/ml_engine/batch_predict/sample.ipynb)\n",
"* [Cloud Machine Learning Engine job REST API](https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs)\n",
"\n",
"## License\n",
"By deploying or using this software you agree to comply with the [AI Hub Terms of Service](https://aihub.cloud.google.com/u/0/aihub-tos) and the [Google APIs Terms of Service](https://developers.google.com/terms/). To the extent of a direct conflict of terms, the AI Hub Terms of Service will control."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}