89 lines
3.6 KiB
Python
89 lines
3.6 KiB
Python
from kfp.components import InputPath, OutputPath
|
|
|
|
|
|
def SchemaGen(
|
|
statistics_path: InputPath('ExampleStatistics'),
|
|
schema_path: OutputPath('Schema'),
|
|
infer_feature_shape: bool = None, # ? False
|
|
):
|
|
"""Constructs a SchemaGen component.
|
|
|
|
Args:
|
|
statistics: A Channel of `ExampleStatistics` type (required if spec is not
|
|
passed). This should contain at least a `train` split. Other splits are
|
|
currently ignored. _required_
|
|
infer_feature_shape: Boolean value indicating
|
|
whether or not to infer the shape of features. If the feature shape is
|
|
not inferred, downstream Tensorflow Transform component using the schema
|
|
will parse input as tf.SparseTensor.
|
|
Returns:
|
|
output: Output `Schema` channel for schema result.
|
|
"""
|
|
from tfx.components.schema_gen.component import SchemaGen as component_class
|
|
|
|
#Generated code
|
|
import json
|
|
import os
|
|
import tensorflow
|
|
from google.protobuf import json_format, message
|
|
from tfx.types import Artifact, channel_utils, artifact_utils
|
|
|
|
arguments = locals().copy()
|
|
|
|
component_class_args = {}
|
|
|
|
for name, execution_parameter in component_class.SPEC_CLASS.PARAMETERS.items():
|
|
argument_value_obj = argument_value = arguments.get(name, None)
|
|
if argument_value is None:
|
|
continue
|
|
parameter_type = execution_parameter.type
|
|
if isinstance(parameter_type, type) and issubclass(parameter_type, message.Message): # Maybe FIX: execution_parameter.type can also be a tuple
|
|
argument_value_obj = parameter_type()
|
|
json_format.Parse(argument_value, argument_value_obj)
|
|
component_class_args[name] = argument_value_obj
|
|
|
|
for name, channel_parameter in component_class.SPEC_CLASS.INPUTS.items():
|
|
artifact_path = arguments[name + '_path']
|
|
if artifact_path:
|
|
artifact = channel_parameter.type()
|
|
artifact.uri = artifact_path + '/' # ?
|
|
if channel_parameter.type.PROPERTIES and 'split_names' in channel_parameter.type.PROPERTIES:
|
|
# Recovering splits
|
|
subdirs = tensorflow.io.gfile.listdir(artifact_path)
|
|
artifact.split_names = artifact_utils.encode_split_names(sorted(subdirs))
|
|
component_class_args[name] = channel_utils.as_channel([artifact])
|
|
|
|
component_class_instance = component_class(**component_class_args)
|
|
|
|
input_dict = {name: channel.get() for name, channel in component_class_instance.inputs.get_all().items()}
|
|
output_dict = {name: channel.get() for name, channel in component_class_instance.outputs.get_all().items()}
|
|
exec_properties = component_class_instance.exec_properties
|
|
|
|
# Generating paths for output artifacts
|
|
for name, artifacts in output_dict.items():
|
|
base_artifact_path = arguments[name + '_path']
|
|
# Are there still cases where output channel has multiple artifacts?
|
|
for idx, artifact in enumerate(artifacts):
|
|
subdir = str(idx + 1) if idx > 0 else ''
|
|
artifact.uri = os.path.join(base_artifact_path, subdir) # Ends with '/'
|
|
|
|
print('component instance: ' + str(component_class_instance))
|
|
|
|
#executor = component_class.EXECUTOR_SPEC.executor_class() # Same
|
|
executor = component_class_instance.executor_spec.executor_class()
|
|
executor.Do(
|
|
input_dict=input_dict,
|
|
output_dict=output_dict,
|
|
exec_properties=exec_properties,
|
|
)
|
|
#return (output_path,)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
import kfp
|
|
kfp.components.func_to_container_op(
|
|
SchemaGen,
|
|
base_image='tensorflow/tfx:0.21.4',
|
|
output_component_file='component.yaml'
|
|
)
|