website/content/en/docs/external-add-ons/serving/tfserving_new.md

393 lines
10 KiB
Markdown

+++
title = "TensorFlow Serving"
description = "Serving TensorFlow models"
weight = 51
+++
{{% alert title="Out of date" color="warning" %}}
This guide contains outdated information pertaining to Kubeflow 1.0. This guide
needs to be updated for Kubeflow 1.1.
{{% /alert %}}
{{% stable-status %}}
## Serving a model
To deploy a model we create following resources as illustrated below
- A deployment to deploy the model using TFServing
- A K8s service to create an endpoint a service
- An Istio virtual service to route traffic to the model and expose it through the Istio gateway
- An Istio DestinationRule is for doing traffic splitting.
```yaml
apiVersion: v1
kind: Service
metadata:
labels:
app: mnist
name: mnist-service
namespace: kubeflow
spec:
ports:
- name: grpc-tf-serving
port: 9000
targetPort: 9000
- name: http-tf-serving
port: 8500
targetPort: 8500
selector:
app: mnist
type: ClusterIP
---
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: mnist
name: mnist-v1
namespace: kubeflow
spec:
selector:
matchLabels:
app: mnist
template:
metadata:
annotations:
sidecar.istio.io/inject: "true"
labels:
app: mnist
version: v1
spec:
containers:
- args:
- --port=9000
- --rest_api_port=8500
- --model_name=mnist
- --model_base_path=YOUR_MODEL
command:
- /usr/bin/tensorflow_model_server
image: tensorflow/serving:1.11.1
imagePullPolicy: IfNotPresent
livenessProbe:
initialDelaySeconds: 30
periodSeconds: 30
tcpSocket:
port: 9000
name: mnist
ports:
- containerPort: 9000
- containerPort: 8500
resources:
limits:
cpu: "4"
memory: 4Gi
requests:
cpu: "1"
memory: 1Gi
volumeMounts:
- mountPath: /var/config/
name: config-volume
volumes:
- configMap:
name: mnist-v1-config
name: config-volume
---
apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
labels:
name: mnist-service
namespace: kubeflow
spec:
host: mnist-service
subsets:
- labels:
version: v1
name: v1
---
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
labels:
name: mnist-service
namespace: kubeflow
spec:
gateways:
- kubeflow-gateway
hosts:
- '*'
http:
- match:
- method:
exact: POST
uri:
prefix: /tfserving/models/mnist
rewrite:
uri: /v1/models/mnist:predict
route:
- destination:
host: mnist-service
port:
number: 8500
subset: v1
weight: 100
```
Referring to the above example, you can customize your deployment by changing the following configurations in the YAML file:
- In the deployment resource, the `model_base_path` argument points to the model.
Change the value to your own model.
- The example contains three configurations for Google Cloud Storage (GCS) access:
volumes (secret `user-gcp-sa`), volumeMounts, and
env (GOOGLE_APPLICATION_CREDENTIALS).
If your model is not at GCS (e.g. using S3 from AWS), See the section below on
how to setup access.
- GPU. If you want to use GPU, add `nvidia.com/gpu: 1`
in container resources, and use a GPU image, for example:
`tensorflow/serving:1.11.1-gpu`.
```yaml
resources:
limits:
cpu: "4"
memory: 4Gi
nvidia.com/gpu: 1
```
- The resource `VirtualService` and `DestinationRule` are for routing.
With the example above, the model is accessible at `HOSTNAME/tfserving/models/mnist`
(HOSTNAME is your Kubeflow deployment hostname). To change the path, edit the
`http.match.uri` of VirtualService.
### Pointing to the model
Depending where model file is located, set correct parameters
*Google cloud*
Change the deployment spec as follows:
```yaml
spec:
selector:
matchLabels:
app: mnist
template:
metadata:
annotations:
sidecar.istio.io/inject: "true"
labels:
app: mnist
version: v1
spec:
containers:
- args:
- --port=9000
- --rest_api_port=8500
- --model_name=mnist
- --model_base_path=gs://kubeflow-examples-data/mnist
command:
- /usr/bin/tensorflow_model_server
env:
- name: GOOGLE_APPLICATION_CREDENTIALS
value: /secret/gcp-credentials/user-gcp-sa.json
image: tensorflow/serving:1.11.1-gpu
imagePullPolicy: IfNotPresent
livenessProbe:
initialDelaySeconds: 30
periodSeconds: 30
tcpSocket:
port: 9000
name: mnist
ports:
- containerPort: 9000
- containerPort: 8500
resources:
limits:
cpu: "4"
memory: 4Gi
nvidia.com/gpu: 1
requests:
cpu: "1"
memory: 1Gi
volumeMounts:
- mountPath: /var/config/
name: config-volume
- mountPath: /secret/gcp-credentials
name: gcp-credentials
volumes:
- configMap:
name: mnist-v1-config
name: config-volume
- name: gcp-credentials
secret:
secretName: user-gcp-sa
```
The changes are:
- environment variable `GOOGLE_APPLICATION_CREDENTIALS`
- volume `gcp-credentials`
- volumeMount `gcp-credentials`
We need a service account that can access the model.
If you are using Kubeflow's click-to-deploy app, there should be already a secret, `user-gcp-sa`, in the cluster.
The model at gs://kubeflow-examples-data/mnist is publicly accessible. However, if your environment doesn't
have google cloud credential setup, TF serving will not be able to read the model.
See this [issue](https://github.com/kubeflow/kubeflow/issues/621) for example.
To setup the google cloud credential, you should either have the environment variable
`GOOGLE_APPLICATION_CREDENTIALS` pointing to the credential file, or run `gcloud auth login`.
See [doc](https://cloud.google.com/docs/authentication/) for more detail.
*S3*
To use S3, first you need to create secret that will contain access credentials. Use base64 to encode your credentials and check details in the Kubernetes guide to [creating a secret manually](https://kubernetes.io/docs/concepts/configuration/secret/#creating-a-secret-manually)
```
apiVersion: v1
metadata:
name: secretname
data:
AWS_ACCESS_KEY_ID: bmljZSB0cnk6KQ==
AWS_SECRET_ACCESS_KEY: YnV0IHlvdSBkaWRuJ3QgZ2V0IG15IHNlY3JldCE=
kind: Secret
```
Then use the following manifest as an example:
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: s3
name: s3
namespace: kubeflow
spec:
selector:
matchLabels:
app: mnist
template:
metadata:
annotations:
sidecar.istio.io/inject: null
labels:
app: s3
version: v1
spec:
containers:
- args:
- --port=9000
- --rest_api_port=8500
- --model_name=s3
- --model_base_path=s3://abc
- --monitoring_config_file=/var/config/monitoring_config.txt
command:
- /usr/bin/tensorflow_model_server
env:
- name: AWS_ACCESS_KEY_ID
valueFrom:
secretKeyRef:
key: AWS_ACCESS_KEY_ID
name: secretname
- name: AWS_SECRET_ACCESS_KEY
valueFrom:
secretKeyRef:
key: AWS_SECRET_ACCESS_KEY
name: secretname
- name: AWS_REGION
value: us-west-1
- name: S3_USE_HTTPS
value: "true"
- name: S3_VERIFY_SSL
value: "true"
- name: S3_ENDPOINT
value: s3.us-west-1.amazonaws.com
image: tensorflow/serving:1.11.1
imagePullPolicy: IfNotPresent
livenessProbe:
initialDelaySeconds: 30
periodSeconds: 30
tcpSocket:
port: 9000
name: s3
ports:
- containerPort: 9000
- containerPort: 8500
resources:
limits:
cpu: "4"
memory: 4Gi
requests:
cpu: "1"
memory: 1Gi
volumeMounts:
- mountPath: /var/config/
name: config-volume
volumes:
- configMap:
name: s3-config
name: config-volume
```
### Sending prediction request directly
If the service type is LoadBalancer, it will have its own accessible external ip.
Get the external ip by:
```
kubectl get svc mnist-service
```
And then send the request
```
curl -X POST -d @input.json http://EXTERNAL_IP:8500/v1/models/mnist:predict
```
### Sending prediction request through ingress and IAP
If the service type is ClusterIP, you can access through ingress.
It's protected and only one with right credentials can access the endpoint.
Below shows how to programmatically authenticate a service account to access IAP.
1. Save the client ID that you used to
[deploy Kubeflow](/docs/gke/deploy/) as `IAP_CLIENT_ID`.
2. Create a service account
```
gcloud iam service-accounts create --project=$PROJECT $SERVICE_ACCOUNT
```
3. Grant the service account access to IAP enabled resources:
```
gcloud projects add-iam-policy-binding $PROJECT \
--role roles/iap.httpsResourceAccessor \
--member serviceAccount:$SERVICE_ACCOUNT
```
4. Download the service account key:
```
gcloud iam service-accounts keys create ${KEY_FILE} \
--iam-account ${SERVICE_ACCOUNT}@${PROJECT}.iam.gserviceaccount.com
```
5. Export the environment variable `GOOGLE_APPLICATION_CREDENTIALS` to point to the key file of the service account.
Finally, you can send the request with an input file with this python
[script](https://github.com/kubeflow/kubeflow/blob/master/docs/gke/iap_request.py)
```
python iap_request.py https://YOUR_HOST/tfserving/models/mnist IAP_CLIENT_ID --input=YOUR_INPUT_FILE
```
To send a GET request:
```
python iap_request.py https://YOUR_HOST/models/MODEL_NAME/ IAP_CLIENT_ID
```
## Telemetry and Rolling out model using Istio
Please look at the [Istio guide](/docs/external-add-ons/istio/).
## Logs and metrics with Stackdriver
See the guide to [logging and monitoring](/docs/gke/monitoring/)
for instructions on getting logs and metrics using Stackdriver.