792 lines
28 KiB
Markdown
792 lines
28 KiB
Markdown
---
|
||
title: 为 Pod 或容器配置安全上下文
|
||
content_type: task
|
||
weight: 80
|
||
---
|
||
<!--
|
||
reviewers:
|
||
- erictune
|
||
- mikedanese
|
||
- thockin
|
||
title: Configure a Security Context for a Pod or Container
|
||
content_type: task
|
||
weight: 80
|
||
-->
|
||
|
||
<!-- overview -->
|
||
|
||
<!--
|
||
A security context defines privilege and access control settings for
|
||
a Pod or Container. Security context settings include, but are not limited to:
|
||
|
||
* Discretionary Access Control: Permission to access an object, like a file, is based on
|
||
[user ID (UID) and group ID (GID)](https://wiki.archlinux.org/index.php/users_and_groups).
|
||
* [Security Enhanced Linux (SELinux)](https://en.wikipedia.org/wiki/Security-Enhanced_Linux):
|
||
Objects are assigned security labels.
|
||
* Running as privileged or unprivileged.
|
||
* [Linux Capabilities](https://linux-audit.com/linux-capabilities-hardening-linux-binaries-by-removing-setuid/):
|
||
Give a process some privileges, but not all the privileges of the root user.
|
||
-->
|
||
安全上下文(Security Context)定义 Pod 或 Container 的特权与访问控制设置。
|
||
安全上下文包括但不限于:
|
||
|
||
* 自主访问控制(Discretionary Access Control):
|
||
基于[用户 ID(UID)和组 ID(GID)](https://wiki.archlinux.org/index.php/users_and_groups)
|
||
来判定对对象(例如文件)的访问权限。
|
||
* [安全性增强的 Linux(SELinux)](https://zh.wikipedia.org/wiki/%E5%AE%89%E5%85%A8%E5%A2%9E%E5%BC%BA%E5%BC%8FLinux):
|
||
为对象赋予安全性标签。
|
||
* 以特权模式或者非特权模式运行。
|
||
* [Linux 权能](https://linux-audit.com/linux-capabilities-hardening-linux-binaries-by-removing-setuid/):
|
||
为进程赋予 root 用户的部分特权而非全部特权。
|
||
<!--
|
||
* [AppArmor](/docs/tutorials/security/apparmor/):
|
||
Use program profiles to restrict the capabilities of individual programs.
|
||
* [Seccomp](/docs/tutorials/security/seccomp/): Filter a process's system calls.
|
||
* `allowPrivilegeEscalation`: Controls whether a process can gain more privileges than
|
||
its parent process. This bool directly controls whether the
|
||
[`no_new_privs`](https://www.kernel.org/doc/Documentation/prctl/no_new_privs.txt)
|
||
flag gets set on the container process.
|
||
`allowPrivilegeEscalation` is always true
|
||
when the container:
|
||
|
||
- is run as privileged, or
|
||
- has `CAP_SYS_ADMIN`
|
||
|
||
* readOnlyRootFilesystem: Mounts the container's root filesystem as read-only.
|
||
-->
|
||
* [AppArmor](/zh/docs/tutorials/security/apparmor/):使用程序配置来限制个别程序的权能。
|
||
* [Seccomp](/zh/docs/tutorials/security/seccomp/):过滤进程的系统调用。
|
||
* `allowPrivilegeEscalation`:控制进程是否可以获得超出其父进程的特权。
|
||
此布尔值直接控制是否为容器进程设置
|
||
[`no_new_privs`](https://www.kernel.org/doc/Documentation/prctl/no_new_privs.txt)标志。
|
||
当容器满足一下条件之一时,`allowPrivilegeEscalation` 总是为 true:
|
||
|
||
- 以特权模式运行,或者
|
||
- 具有 `CAP_SYS_ADMIN` 权能
|
||
|
||
* readOnlyRootFilesystem:以只读方式加载容器的根文件系统。
|
||
|
||
<!--
|
||
The above bullets are not a complete set of security context settings - please see
|
||
[SecurityContext](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#securitycontext-v1-core)
|
||
for a comprehensive list.
|
||
-->
|
||
以上条目不是安全上下文设置的完整列表 -- 请参阅
|
||
[SecurityContext](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#securitycontext-v1-core)
|
||
了解其完整列表。
|
||
|
||
## {{% heading "prerequisites" %}}
|
||
|
||
{{< include "task-tutorial-prereqs.md" >}} {{< version-check >}}
|
||
|
||
<!-- steps -->
|
||
|
||
<!--
|
||
## Set the security context for a Pod
|
||
|
||
To specify security settings for a Pod, include the `securityContext` field
|
||
in the Pod specification. The `securityContext` field is a
|
||
[PodSecurityContext](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#podsecuritycontext-v1-core) object.
|
||
The security settings that you specify for a Pod apply to all Containers in the Pod.
|
||
Here is a configuration file for a Pod that has a `securityContext` and an `emptyDir` volume:
|
||
-->
|
||
## 为 Pod 设置安全性上下文 {#set-the-security-context-for-a-pod}
|
||
|
||
要为 Pod 设置安全性设置,可在 Pod 规约中包含 `securityContext` 字段。`securityContext` 字段值是一个
|
||
[PodSecurityContext](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#podsecuritycontext-v1-core)
|
||
对象。你为 Pod 所设置的安全性配置会应用到 Pod 中所有 Container 上。
|
||
下面是一个 Pod 的配置文件,该 Pod 定义了 `securityContext` 和一个 `emptyDir` 卷:
|
||
|
||
{{< codenew file="pods/security/security-context.yaml" >}}
|
||
|
||
<!--
|
||
In the configuration file, the `runAsUser` field specifies that for any Containers in
|
||
the Pod, all processes run with user ID 1000. The `runAsGroup` field specifies the primary group ID of 3000 for
|
||
all processes within any containers of the Pod. If this field is omitted, the primary group ID of the containers
|
||
will be root(0). Any files created will also be owned by user 1000 and group 3000 when `runAsGroup` is specified.
|
||
Since `fsGroup` field is specified, all processes of the container are also part of the supplementary group ID 2000.
|
||
The owner for volume `/data/demo` and any files created in that volume will be Group ID 2000.
|
||
|
||
Create the Pod:
|
||
-->
|
||
在配置文件中,`runAsUser` 字段指定 Pod 中的所有容器内的进程都使用用户 ID 1000
|
||
来运行。`runAsGroup` 字段指定所有容器中的进程都以主组 ID 3000 来运行。
|
||
如果忽略此字段,则容器的主组 ID 将是 root(0)。
|
||
当 `runAsGroup` 被设置时,所有创建的文件也会划归用户 1000 和组 3000。
|
||
由于 `fsGroup` 被设置,容器中所有进程也会是附组 ID 2000 的一部分。
|
||
卷 `/data/demo` 及在该卷中创建的任何文件的属主都会是组 ID 2000。
|
||
|
||
创建该 Pod:
|
||
|
||
```shell
|
||
kubectl apply -f https://k8s.io/examples/pods/security/security-context.yaml
|
||
```
|
||
|
||
<!--
|
||
Verify that the Pod's Container is running:
|
||
-->
|
||
检查 Pod 的容器处于运行状态:
|
||
|
||
```shell
|
||
kubectl get pod security-context-demo
|
||
```
|
||
|
||
<!--
|
||
Get a shell to the running Container:
|
||
-->
|
||
开启一个 Shell 进入到运行中的容器:
|
||
|
||
```shell
|
||
kubectl exec -it security-context-demo -- sh
|
||
```
|
||
|
||
<!--
|
||
In your shell, list the running processes:
|
||
-->
|
||
在你的 Shell 中,列举运行中的进程:
|
||
|
||
```shell
|
||
ps
|
||
```
|
||
|
||
<!--
|
||
The output shows that the processes are running as user 1000, which is the value of `runAsUser`:
|
||
-->
|
||
输出显示进程以用户 1000 运行,即 `runAsUser` 所设置的值:
|
||
|
||
```shell
|
||
PID USER TIME COMMAND
|
||
1 1000 0:00 sleep 1h
|
||
6 1000 0:00 sh
|
||
...
|
||
```
|
||
|
||
<!--
|
||
In your shell, navigate to `/data`, and list the one directory:
|
||
-->
|
||
在你的 Shell 中,进入 `/data` 目录列举其内容:
|
||
|
||
```shell
|
||
cd /data
|
||
ls -l
|
||
```
|
||
|
||
<!--
|
||
The output shows that the `/data/demo` directory has group ID 2000, which is
|
||
the value of `fsGroup`.
|
||
-->
|
||
输出显示 `/data/demo` 目录的组 ID 为 2000,即 `fsGroup` 的设置值:
|
||
|
||
```shell
|
||
drwxrwsrwx 2 root 2000 4096 Jun 6 20:08 demo
|
||
```
|
||
|
||
<!--
|
||
In your shell, navigate to `/data/demo`, and create a file:
|
||
-->
|
||
在你的 Shell 中,进入到 `/data/demo` 目录下创建一个文件:
|
||
|
||
```shell
|
||
cd demo
|
||
echo hello > testfile
|
||
```
|
||
|
||
<!--
|
||
List the file in the `/data/demo` directory:
|
||
-->
|
||
列举 `/data/demo` 目录下的文件:
|
||
|
||
```shell
|
||
ls -l
|
||
```
|
||
|
||
<!--
|
||
The output shows that `testfile` has group ID 2000, which is the value of `fsGroup`.
|
||
-->
|
||
输出显示 `testfile` 的组 ID 为 2000,也就是 `fsGroup` 所设置的值:
|
||
|
||
```shell
|
||
-rw-r--r-- 1 1000 2000 6 Jun 6 20:08 testfile
|
||
```
|
||
|
||
<!--
|
||
Run the following command:
|
||
-->
|
||
运行下面的命令:
|
||
|
||
```shell
|
||
id
|
||
```
|
||
|
||
<!--
|
||
The output is similar to this:
|
||
-->
|
||
输出类似于:
|
||
|
||
```none
|
||
uid=1000 gid=3000 groups=2000
|
||
```
|
||
|
||
<!--
|
||
From the output, you can see that `gid` is 3000 which is same as the `runAsGroup` field.
|
||
If the `runAsGroup` was omitted, the `gid` would remain as 0 (root) and the process will
|
||
be able to interact with files that are owned by the root(0) group and groups that have
|
||
the required group permissions for the root (0) group.
|
||
|
||
Exit your shell:
|
||
-->
|
||
从输出中你会看到 `gid` 值为 3000,也就是 `runAsGroup` 字段的值。
|
||
如果 `runAsGroup` 被忽略,则 `gid` 会取值 0(root),而进程就能够与 root
|
||
用户组所拥有以及要求 root 用户组访问权限的文件交互。
|
||
|
||
退出你的 Shell:
|
||
|
||
```shell
|
||
exit
|
||
```
|
||
|
||
<!--
|
||
## Configure volume permission and ownership change policy for Pods
|
||
-->
|
||
## 为 Pod 配置卷访问权限和属主变更策略
|
||
|
||
{{< feature-state for_k8s_version="v1.23" state="stable" >}}
|
||
|
||
<!--
|
||
By default, Kubernetes recursively changes ownership and permissions for the contents of each
|
||
volume to match the `fsGroup` specified in a Pod's `securityContext` when that volume is
|
||
mounted.
|
||
For large volumes, checking and changing ownership and permissions can take a lot of time,
|
||
slowing Pod startup. You can use the `fsGroupChangePolicy` field inside a `securityContext`
|
||
to control the way that Kubernetes checks and manages ownership and permissions
|
||
for a volume.
|
||
-->
|
||
默认情况下,Kubernetes 在挂载一个卷时,会递归地更改每个卷中的内容的属主和访问权限,
|
||
使之与 Pod 的 `securityContext` 中指定的 `fsGroup` 匹配。
|
||
对于较大的数据卷,检查和变更属主与访问权限可能会花费很长时间,降低 Pod 启动速度。
|
||
你可以在 `securityContext` 中使用 `fsGroupChangePolicy` 字段来控制 Kubernetes
|
||
检查和管理卷属主和访问权限的方式。
|
||
|
||
<!--
|
||
**fsGroupChangePolicy** - `fsGroupChangePolicy` defines behavior for changing ownership
|
||
and permission of the volume before being exposed inside a Pod.
|
||
This field only applies to volume types that support `fsGroup` controlled ownership and permissions.
|
||
This field has two possible values:
|
||
|
||
* _OnRootMismatch_: Only change permissions and ownership if permission and ownership of
|
||
root directory does not match with expected permissions of the volume.
|
||
This could help shorten the time it takes to change ownership and permission of a volume.
|
||
* _Always_: Always change permission and ownership of the volume when volume is mounted.
|
||
|
||
For example:
|
||
-->
|
||
**fsGroupChangePolicy** - `fsGroupChangePolicy` 定义在卷被暴露给 Pod 内部之前对其
|
||
内容的属主和访问许可进行变更的行为。此字段仅适用于那些支持使用 `fsGroup` 来
|
||
控制属主与访问权限的卷类型。此字段的取值可以是:
|
||
|
||
* `OnRootMismatch`:只有根目录的属主与访问权限与卷所期望的权限不一致时,
|
||
才改变其中内容的属主和访问权限。这一设置有助于缩短更改卷的属主与访问
|
||
权限所需要的时间。
|
||
* `Always`:在挂载卷时总是更改卷中内容的属主和访问权限。
|
||
|
||
例如:
|
||
|
||
```yaml
|
||
securityContext:
|
||
runAsUser: 1000
|
||
runAsGroup: 3000
|
||
fsGroup: 2000
|
||
fsGroupChangePolicy: "OnRootMismatch"
|
||
```
|
||
|
||
<!--
|
||
This field has no effect on ephemeral volume types such as
|
||
[`secret`](/docs/concepts/storage/volumes/#secret),
|
||
[`configMap`](/docs/concepts/storage/volumes/#configmap),
|
||
and [`emptydir`](/docs/concepts/storage/volumes/#emptydir).
|
||
-->
|
||
{{< note >}}
|
||
此字段对于 [`secret`](/zh/docs/concepts/storage/volumes/#secret)、
|
||
[`configMap`](/zh/docs/concepts/storage/volumes/#configmap)
|
||
和 [`emptydir`](/zh/docs/concepts/storage/volumes/#emptydir)
|
||
这类临时性存储无效。
|
||
{{< /note >}}
|
||
|
||
<!--
|
||
## Delegating volume permission and ownership change to CSI driver
|
||
-->
|
||
## 将卷权限和所有权更改委派给 CSI 驱动程序
|
||
{{< feature-state for_k8s_version="v1.23" state="beta" >}}
|
||
|
||
<!--
|
||
If you deploy a [Container Storage Interface (CSI)](https://github.com/container-storage-interface/spec/blob/master/spec.md)
|
||
driver which supports the `VOLUME_MOUNT_GROUP` `NodeServiceCapability`, the
|
||
process of setting file ownership and permissions based on the
|
||
`fsGroup` specified in the `securityContext` will be performed by the CSI driver
|
||
instead of Kubernetes, provided that the `DelegateFSGroupToCSIDriver` Kubernetes
|
||
feature gate is enabled. In this case, since Kubernetes doesn't perform any
|
||
ownership and permission change, `fsGroupChangePolicy` does not take effect, and
|
||
as specified by CSI, the driver is expected to mount the volume with the
|
||
provided `fsGroup`, resulting in a volume that is readable/writable by the
|
||
`fsGroup`.
|
||
-->
|
||
如果你部署了一个[容器存储接口 (CSI)](https://github.com/container-storage-interface/spec/blob/master/spec.md)
|
||
驱动,而该驱动支持 `VOLUME_MOUNT_GROUP` `NodeServiceCapability`,
|
||
在 `securityContext` 中指定 `fsGroup` 来设置文件所有权和权限的过程将由 CSI
|
||
驱动而不是 Kubernetes 来执行,前提是 Kubernetes 的 `DelegateFSGroupToCSIDriver`
|
||
特性门控已启用。在这种情况下,由于 Kubernetes 不执行任何所有权和权限更改,
|
||
`fsGroupChangePolicy` 不会生效,并且按照 CSI 的规定,CSI 驱动应该使用所指定的
|
||
`fsGroup` 来挂载卷,从而生成了一个对 `fsGroup` 可读/可写的卷.
|
||
|
||
<!--
|
||
Please refer to the [KEP](https://github.com/gnufied/enhancements/blob/master/keps/sig-storage/2317-fsgroup-on-mount/README.md)
|
||
and the description of the `VolumeCapability.MountVolume.volume_mount_group`
|
||
field in the [CSI spec](https://github.com/container-storage-interface/spec/blob/master/spec.md#createvolume)
|
||
for more information.
|
||
-->
|
||
更多的信息请参考 [KEP](https://github.com/gnufied/enhancements/blob/master/keps/sig-storage/2317-fsgroup-on-mount/README.md)
|
||
和 [CSI 规范](https://github.com/container-storage-interface/spec/blob/master/spec.md#createvolume)
|
||
中的字段 `VolumeCapability.MountVolume.volume_mount_group` 的描述。
|
||
|
||
<!--
|
||
## Set the security context for a Container
|
||
|
||
To specify security settings for a Container, include the `securityContext` field
|
||
in the Container manifest. The `securityContext` field is a
|
||
[SecurityContext](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#securitycontext-v1-core) object.
|
||
Security settings that you specify for a Container apply only to
|
||
the individual Container, and they override settings made at the Pod level when
|
||
there is overlap. Container settings do not affect the Pod's Volumes.
|
||
|
||
Here is the configuration file for a Pod that has one Container. Both the Pod
|
||
and the Container have a `securityContext` field:
|
||
-->
|
||
## 为 Container 设置安全性上下文 {#set-the-security-context-for-a-container}
|
||
|
||
若要为 Container 设置安全性配置,可以在 Container 清单中包含 `securityContext`
|
||
字段。`securityContext` 字段的取值是一个
|
||
[SecurityContext](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#securitycontext-v1-core)
|
||
对象。你为 Container 设置的安全性配置仅适用于该容器本身,并且所指定的设置在与
|
||
Pod 层面设置的内容发生重叠时,会重载后者。Container 层面的设置不会影响到 Pod 的卷。
|
||
|
||
下面是一个 Pod 的配置文件,其中包含一个 Container。Pod 和 Container 都有
|
||
`securityContext` 字段:
|
||
|
||
{{< codenew file="pods/security/security-context-2.yaml" >}}
|
||
|
||
<!--
|
||
Create the Pod:
|
||
-->
|
||
创建该 Pod:
|
||
|
||
```shell
|
||
kubectl apply -f https://k8s.io/examples/pods/security/security-context-2.yaml
|
||
```
|
||
|
||
<!--
|
||
Verify that the Pod's Container is running:
|
||
-->
|
||
验证 Pod 中的容器处于运行状态:
|
||
|
||
```shell
|
||
kubectl get pod security-context-demo-2
|
||
```
|
||
|
||
<!--
|
||
Get a shell into the running Container:
|
||
-->
|
||
启动一个 Shell 进入到运行中的容器内:
|
||
|
||
```shell
|
||
kubectl exec -it security-context-demo-2 -- sh
|
||
```
|
||
|
||
<!--
|
||
In your shell, list the running processes:
|
||
-->
|
||
在你的 Shell 中,列举运行中的进程:
|
||
|
||
```shell
|
||
ps aux
|
||
```
|
||
|
||
<!--
|
||
The output shows that the processes are running as user 2000. This is the value
|
||
of `runAsUser` specified for the Container. It overrides the value 1000 that is
|
||
specified for the Pod.
|
||
-->
|
||
输出显示进程以用户 2000 运行。该值是在 Container 的 `runAsUser` 中设置的。
|
||
该设置值重载了 Pod 层面所设置的值 1000。
|
||
|
||
```
|
||
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
|
||
2000 1 0.0 0.0 4336 764 ? Ss 20:36 0:00 /bin/sh -c node server.js
|
||
2000 8 0.1 0.5 772124 22604 ? Sl 20:36 0:00 node server.js
|
||
...
|
||
```
|
||
|
||
<!--
|
||
Exit your shell:
|
||
-->
|
||
退出你的 Shell:
|
||
|
||
```shell
|
||
exit
|
||
```
|
||
|
||
<!--
|
||
## Set capabilities for a Container
|
||
|
||
With [Linux capabilities](https://man7.org/linux/man-pages/man7/capabilities.7.html),
|
||
you can grant certain privileges to a process without granting all the privileges
|
||
of the root user. To add or remove Linux capabilities for a Container, include the
|
||
`capabilities` field in the `securityContext` section of the Container manifest.
|
||
|
||
First, see what happens when you don't include a `capabilities` field.
|
||
Here is configuration file that does not add or remove any Container capabilities:
|
||
-->
|
||
## 为 Container 设置权能 {#set-capabilities-for-a-container}
|
||
|
||
使用 [Linux 权能](https://man7.org/linux/man-pages/man7/capabilities.7.html),
|
||
你可以赋予进程 root 用户所拥有的某些特权,但不必赋予其全部特权。
|
||
要为 Container 添加或移除 Linux 权能,可以在 Container 清单的 `securityContext`
|
||
节包含 `capabilities` 字段。
|
||
|
||
首先,看一下不包含 `capabilities` 字段时候会发生什么。
|
||
下面是一个配置文件,其中没有添加或移除容器的权能:
|
||
|
||
{{< codenew file="pods/security/security-context-3.yaml" >}}
|
||
|
||
<!--
|
||
Create the Pod:
|
||
-->
|
||
创建该 Pod:
|
||
|
||
```shell
|
||
kubectl apply -f https://k8s.io/examples/pods/security/security-context-3.yaml
|
||
```
|
||
|
||
<!--
|
||
Verify that the Pod's Container is running:
|
||
-->
|
||
验证 Pod 的容器处于运行状态:
|
||
|
||
```shell
|
||
kubectl get pod security-context-demo-3
|
||
```
|
||
|
||
<!--
|
||
Get a shell into the running Container:
|
||
-->
|
||
启动一个 Shell 进入到运行中的容器:
|
||
|
||
```shell
|
||
kubectl exec -it security-context-demo-3 -- sh
|
||
```
|
||
|
||
<!--
|
||
In your shell, list the running processes:
|
||
-->
|
||
在你的 Shell 中,列举运行中的进程:
|
||
|
||
```shell
|
||
ps aux
|
||
```
|
||
|
||
<!--
|
||
The output shows the process IDs (PIDs) for the Container:
|
||
-->
|
||
输出显示容器中进程 ID(PIDs):
|
||
|
||
```shell
|
||
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
|
||
root 1 0.0 0.0 4336 796 ? Ss 18:17 0:00 /bin/sh -c node server.js
|
||
root 5 0.1 0.5 772124 22700 ? Sl 18:17 0:00 node server.js
|
||
```
|
||
|
||
<!--
|
||
In your shell, view the status for process 1:
|
||
-->
|
||
在你的 Shell 中,查看进程 1 的状态:
|
||
|
||
```shell
|
||
cd /proc/1
|
||
cat status
|
||
```
|
||
|
||
<!--
|
||
The output shows the capabilities bitmap for the process:
|
||
-->
|
||
输出显示进程的权能位图:
|
||
|
||
```
|
||
...
|
||
CapPrm: 00000000a80425fb
|
||
CapEff: 00000000a80425fb
|
||
...
|
||
```
|
||
|
||
<!--
|
||
Make a note of the capabilities bitmap, and then exit your shell:
|
||
-->
|
||
记下进程权能位图,之后退出你的 Shell:
|
||
|
||
```shell
|
||
exit
|
||
```
|
||
|
||
<!--
|
||
Next, run a Container that is the same as the preceding container, except
|
||
that it has additional capabilities set.
|
||
|
||
Here is the configuration file for a Pod that runs one Container. The configuration
|
||
adds the `CAP_NET_ADMIN` and `CAP_SYS_TIME` capabilities:
|
||
-->
|
||
接下来运行一个与前例中容器相同的容器,只是这个容器有一些额外的权能设置。
|
||
|
||
下面是一个 Pod 的配置,其中运行一个容器。配置为容器添加 `CAP_NET_ADMIN` 和
|
||
`CAP_SYS_TIME` 权能:
|
||
|
||
{{< codenew file="pods/security/security-context-4.yaml" >}}
|
||
|
||
<!--
|
||
Create the Pod:
|
||
-->
|
||
创建 Pod:
|
||
|
||
```shell
|
||
kubectl apply -f https://k8s.io/examples/pods/security/security-context-4.yaml
|
||
```
|
||
|
||
<!--
|
||
Get a shell into the running Container:
|
||
-->
|
||
启动一个 Shell,进入到运行中的容器:
|
||
|
||
```shell
|
||
kubectl exec -it security-context-demo-4 -- sh
|
||
```
|
||
|
||
<!--
|
||
In your shell, view the capabilities for process 1:
|
||
-->
|
||
在你的 Shell 中,查看进程 1 的权能:
|
||
|
||
```shell
|
||
cd /proc/1
|
||
cat status
|
||
```
|
||
|
||
<!--
|
||
The output shows capabilities bitmap for the process:
|
||
-->
|
||
输出显示的是进程的权能位图:
|
||
|
||
```shell
|
||
...
|
||
CapPrm: 00000000aa0435fb
|
||
CapEff: 00000000aa0435fb
|
||
...
|
||
```
|
||
|
||
<!--
|
||
Compare the capabilities of the two Containers:
|
||
-->
|
||
比较两个容器的权能位图:
|
||
|
||
```
|
||
00000000a80425fb
|
||
00000000aa0435fb
|
||
```
|
||
|
||
<!--
|
||
In the capability bitmap of the first container, bits 12 and 25 are clear. In the second container,
|
||
bits 12 and 25 are set. Bit 12 is `CAP_NET_ADMIN`, and bit 25 is `CAP_SYS_TIME`.
|
||
See [capability.h](https://github.com/torvalds/linux/blob/master/include/uapi/linux/capability.h)
|
||
for definitions of the capability constants.
|
||
-->
|
||
在第一个容器的权能位图中,位 12 和 25 是没有设置的。在第二个容器中,位 12
|
||
和 25 是设置了的。位 12 是 `CAP_NET_ADMIN` 而位 25 则是 `CAP_SYS_TIME`。
|
||
参见 [capability.h](https://github.com/torvalds/linux/blob/master/include/uapi/linux/capability.h)
|
||
了解权能常数的定义。
|
||
|
||
<!--
|
||
Linux capability constants have the form `CAP_XXX`.
|
||
But when you list capabilities in your Container manifest, you must
|
||
omit the `CAP_` portion of the constant.
|
||
For example, to add `CAP_SYS_TIME`, include `SYS_TIME` in your list of capabilities.
|
||
-->
|
||
{{< note >}}
|
||
Linux 权能常数定义的形式为 `CAP_XXX`。但是你在 Container 清单中列举权能时,
|
||
要将权能名称中的 `CAP_` 部分去掉。例如,要添加 `CAP_SYS_TIME`,
|
||
可在权能列表中添加 `SYS_TIME`。
|
||
{{< /note >}}
|
||
|
||
<!--
|
||
## Set the Seccomp Profile for a Container
|
||
|
||
To set the Seccomp profile for a Container, include the `seccompProfile` field
|
||
in the `securityContext` section of your Pod or Container manifest. The
|
||
`seccompProfile` field is a
|
||
[SeccompProfile](/docs/reference/generated/kubernetes-api/{{< param "version"
|
||
>}}/#seccompprofile-v1-core) object consisting of `type` and `localhostProfile`.
|
||
Valid options for `type` include `RuntimeDefault`, `Unconfined`, and
|
||
`Localhost`. `localhostProfile` must only be set set if `type: Localhost`. It
|
||
indicates the path of the pre-configured profile on the node, relative to the
|
||
kubelet's configured Seccomp profile location (configured with the `-root-dir`
|
||
flag).
|
||
|
||
Here is an example that sets the Seccomp profile to the node's container runtime
|
||
default profile:
|
||
-->
|
||
## 为容器设置 Seccomp 配置
|
||
|
||
若要为容器设置 Seccomp 配置(Profile),可在你的 Pod 或 Container 清单的
|
||
`securityContext` 节中包含 `seccompProfile` 字段。该字段是一个
|
||
[SeccompProfile](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#seccompprofile-v1-core)
|
||
对象,包含 `type` 和 `localhostProfile` 属性。
|
||
`type` 的合法选项包括 `RuntimeDefault`、`Unconfined` 和 `Localhost`。
|
||
`localhostProfile` 只能在 `type: Localhost` 配置下才可以设置。
|
||
该字段标明节点上预先设定的配置的路径,路径是相对于 kubelet 所配置的
|
||
Seccomp 配置路径(使用 `--root-dir` 设置)而言的。
|
||
|
||
下面是一个例子,设置容器使用节点上容器运行时的默认配置作为 Seccomp 配置:
|
||
|
||
```yaml
|
||
...
|
||
securityContext:
|
||
seccompProfile:
|
||
type: RuntimeDefault
|
||
```
|
||
|
||
<!--
|
||
Here is an example that sets the Seccomp profile to a pre-configured file at
|
||
`<kubelet-root-dir>/seccomp/my-profiles/profile-allow.json`:
|
||
-->
|
||
下面是另一个例子,将 Seccomp 的样板设置为位于
|
||
`<kubelet-根目录>/seccomp/my-profiles/profile-allow.json`
|
||
的一个预先配置的文件。
|
||
|
||
```yaml
|
||
...
|
||
securityContext:
|
||
seccompProfile:
|
||
type: Localhost
|
||
localhostProfile: my-profiles/profile-allow.json
|
||
```
|
||
|
||
<!--
|
||
## Assign SELinux labels to a Container
|
||
|
||
To assign SELinux labels to a Container, include the `seLinuxOptions` field in
|
||
the `securityContext` section of your Pod or Container manifest. The
|
||
`seLinuxOptions` field is an
|
||
[SELinuxOptions](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#selinuxoptions-v1-core)
|
||
object. Here's an example that applies an SELinux level:
|
||
-->
|
||
## 为 Container 赋予 SELinux 标签
|
||
|
||
若要给 Container 设置 SELinux 标签,可以在 Pod 或 Container 清单的
|
||
`securityContext` 节包含 `seLinuxOptions` 字段。
|
||
`seLinuxOptions` 字段的取值是一个
|
||
[SELinuxOptions](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#selinuxoptions-v1-core)
|
||
对象。下面是一个应用 SELinux 标签的例子:
|
||
|
||
```yaml
|
||
...
|
||
securityContext:
|
||
seLinuxOptions:
|
||
level: "s0:c123,c456"
|
||
```
|
||
|
||
<!--
|
||
To assign SELinux labels, the SELinux security module must be loaded on the host operating system.
|
||
-->
|
||
{{< note >}}
|
||
要指定 SELinux,需要在宿主操作系统中装载 SELinux 安全性模块。
|
||
{{< /note >}}
|
||
|
||
<!--
|
||
## Discussion
|
||
|
||
The security context for a Pod applies to the Pod's Containers and also to
|
||
the Pod's Volumes when applicable. Specifically `fsGroup` and `seLinuxOptions` are
|
||
applied to Volumes as follows:
|
||
-->
|
||
## 讨论 {#discussion}
|
||
|
||
Pod 的安全上下文适用于 Pod 中的容器,也适用于 Pod 所挂载的卷(如果有的话)。
|
||
尤其是,`fsGroup` 和 `seLinuxOptions` 按下面的方式应用到挂载卷上:
|
||
|
||
<!--
|
||
* `fsGroup`: Volumes that support ownership management are modified to be owned
|
||
and writable by the GID specified in `fsGroup`. See the
|
||
[Ownership Management design document](https://git.k8s.io/community/contributors/design-proposals/storage/volume-ownership-management.md)
|
||
for more details.
|
||
|
||
* `seLinuxOptions`: Volumes that support SELinux labeling are relabeled to be accessible
|
||
by the label specified under `seLinuxOptions`. Usually you only
|
||
need to set the `level` section. This sets the
|
||
[Multi-Category Security (MCS)](https://selinuxproject.org/page/NB_MLS)
|
||
label given to all Containers in the Pod as well as the Volumes.
|
||
-->
|
||
* `fsGroup`:支持属主管理的卷会被修改,将其属主变更为 `fsGroup` 所指定的 GID,
|
||
并且对该 GID 可写。进一步的细节可参阅
|
||
[属主变更设计文档](https://git.k8s.io/community/contributors/design-proposals/storage/volume-ownership-management.md)。
|
||
|
||
* `seLinuxOptions`:支持 SELinux 标签的卷会被重新打标签,以便可被 `seLinuxOptions`
|
||
下所设置的标签访问。通常你只需要设置 `level` 部分。
|
||
该部分设置的是赋予 Pod 中所有容器及卷的
|
||
[多类别安全性(Multi-Category Security,MCS)](https://selinuxproject.org/page/NB_MLS)标签。
|
||
|
||
<!--
|
||
After you specify an MCS label for a Pod, all Pods with the same label can
|
||
access the Volume. If you need inter-Pod protection, you must assign a unique
|
||
MCS label to each Pod.
|
||
-->
|
||
{{< warning >}}
|
||
在为 Pod 设置 MCS 标签之后,所有带有相同标签的 Pod 可以访问该卷。
|
||
如果你需要跨 Pod 的保护,你必须为每个 Pod 赋予独特的 MCS 标签。
|
||
{{< /warning >}}
|
||
|
||
<!--
|
||
## Clean up
|
||
|
||
Delete the Pod:
|
||
-->
|
||
## 清理
|
||
|
||
删除之前创建的所有 Pod:
|
||
|
||
```shell
|
||
kubectl delete pod security-context-demo
|
||
kubectl delete pod security-context-demo-2
|
||
kubectl delete pod security-context-demo-3
|
||
kubectl delete pod security-context-demo-4
|
||
```
|
||
|
||
## {{% heading "whatsnext" %}}
|
||
|
||
<!--
|
||
* [PodSecurityContext](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#podsecuritycontext-v1-core)
|
||
* [SecurityContext](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#securitycontext-v1-core)
|
||
* [Tuning Docker with the newest security enhancements](https://github.com/containerd/containerd/blob/main/docs/cri/config.md)
|
||
* [Security Contexts design document](https://git.k8s.io/community/contributors/design-proposals/auth/security_context.md)
|
||
* [Ownership Management design document](https://git.k8s.io/community/contributors/design-proposals/storage/volume-ownership-management.md)
|
||
* [Pod Security Policies](/docs/concepts/security/pod-security-policy/)
|
||
* [AllowPrivilegeEscalation design
|
||
document](https://git.k8s.io/community/contributors/design-proposals/auth/no-new-privs.md)
|
||
* For more information about security mechanisms in Linux, see
|
||
[Overview of Linux Kernel Security Features](https://www.linux.com/learn/overview-linux-kernel-security-features)
|
||
-->
|
||
* [PodSecurityContext](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#podsecuritycontext-v1-core) API 定义
|
||
* [SecurityContext](/docs/reference/generated/kubernetes-api/{{< param "version" >}}/#securitycontext-v1-core) API 定义
|
||
* [使用最新的安全性增强来调优 Docker(英文)](https://github.com/containerd/containerd/blob/main/docs/cri/config.md)
|
||
* [安全上下文的设计文档(英文)](https://git.k8s.io/community/contributors/design-proposals/auth/security_context.md)
|
||
* [属主管理的设计文档(英文)](https://git.k8s.io/community/contributors/design-proposals/storage/volume-ownership-management.md)
|
||
* [Pod 安全策略](/zh/docs/concepts/security/pod-security-policy/)
|
||
* [AllowPrivilegeEscalation 的设计文档(英文)](https://git.k8s.io/community/contributors/design-proposals/auth/no-new-privs.md)
|
||
* 关于在 Linux 系统中的安全机制的更多信息,可参阅
|
||
[Linux 内核安全性能力概述](https://www.linux.com/learn/overview-linux-kernel-security-features)。
|
||
|