131 lines
5.7 KiB
Markdown
131 lines
5.7 KiB
Markdown
---
|
||
title: 资源指标管道
|
||
content_type: concept
|
||
---
|
||
<!--
|
||
reviewers:
|
||
- fgrzadkowski
|
||
- piosz
|
||
title: Resource metrics pipeline
|
||
content_type: concept
|
||
-->
|
||
|
||
<!-- overview -->
|
||
|
||
<!--
|
||
Resource usage metrics, such as container CPU and memory usage,
|
||
are available in Kubernetes through the Metrics API. These metrics can be either accessed directly
|
||
by user, for example by using `kubectl top` command, or used by a controller in the cluster, e.g.
|
||
Horizontal Pod Autoscaler, to make decisions.
|
||
-->
|
||
资源使用指标,例如容器 CPU 和内存使用率,可通过 Metrics API 在 Kubernetes 中获得。
|
||
这些指标可以直接被用户访问,比如使用 `kubectl top` 命令行,或者这些指标由集群中的控制器使用,
|
||
例如,Horizontal Pod Autoscaler,使用这些指标来做决策。
|
||
|
||
<!-- body -->
|
||
|
||
<!--
|
||
## The Metrics API
|
||
|
||
Through the Metrics API you can get the amount of resource currently used
|
||
by a given node or a given pod. This API doesn't store the metric values,
|
||
so it's not possible for example to get the amount of resources used by a
|
||
given node 10 minutes ago.
|
||
-->
|
||
## Metrics API {#the-metrics-api}
|
||
|
||
通过 Metrics API,你可以获得指定节点或 Pod 当前使用的资源量。
|
||
此 API 不存储指标值,因此想要获取某个指定节点 10 分钟前的资源使用量是不可能的。
|
||
|
||
<!--
|
||
The API is no different from any other API:
|
||
-->
|
||
此 API 与其他 API 没有区别:
|
||
|
||
<!--
|
||
- it is discoverable through the same endpoint as the other Kubernetes APIs under `/apis/metrics.k8s.io/` path
|
||
- it offers the same security, scalability and reliability guarantees
|
||
-->
|
||
- 此 API 和其它 Kubernetes API 一起位于同一端点(endpoint)之下,是可发现的,
|
||
路径为 `/apis/metrics.k8s.io/`
|
||
- 它提供相同的安全性、可扩展性和可靠性保证
|
||
|
||
<!--
|
||
The API is defined in [k8s.io/metrics](https://github.com/kubernetes/metrics/blob/master/pkg/apis/metrics/v1beta1/types.go)
|
||
repository. You can find more information about the API there.
|
||
-->
|
||
Metrics API 在 [k8s.io/metrics](https://github.com/kubernetes/metrics/blob/master/pkg/apis/metrics/v1beta1/types.go)
|
||
仓库中定义。你可以在那里找到有关 Metrics API 的更多信息。
|
||
|
||
<!--
|
||
The API requires metrics server to be deployed in the cluster. Otherwise it will be not available.
|
||
-->
|
||
{{< note >}}
|
||
Metrics API 需要在集群中部署 Metrics Server。否则它将不可用。
|
||
{{< /note >}}
|
||
|
||
<!--
|
||
## Measuring Resource Usage
|
||
|
||
### CPU
|
||
|
||
CPU is reported as the average usage, in [CPU cores](/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-cpu), over a period of time. This value is derived by taking a rate over a cumulative CPU counter provided by the kernel (in both Linux and Windows kernels). The kubelet chooses the window for the rate calculation.
|
||
-->
|
||
## 度量资源用量 {#measuring-resource-usage}
|
||
|
||
### CPU
|
||
|
||
CPU 用量按其一段时间内的平均值统计,单位为
|
||
[CPU 核](/zh/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu)。
|
||
此度量值通过在内核(包括 Linux 和 Windows)提供的累积 CPU 计数器乘以一个系数得到。
|
||
`kubelet` 组件负责选择计算系数所使用的窗口大小。
|
||
|
||
### 内存 {#memory}
|
||
|
||
内存用量按工作集(Working Set)的大小字节数统计,其数值为收集度量值的那一刻的内存用量。
|
||
如果一切都很理想化,“工作集” 是任务在使用的内存总量,该内存是不可以在内存压力较大
|
||
的情况下被释放的。
|
||
不过,具体的工作集计算方式取决于宿主 OS,有很大不同,且通常都大量使用启发式
|
||
规则来给出一个估计值。
|
||
其中包含所有匿名内存使用(没有后台文件提供存储者),因为 Kubernetes 不支持交换分区。
|
||
度量值通常包含一些高速缓存(有后台文件提供存储)内存,因为宿主操作系统并不是总能
|
||
回收这些页面。
|
||
|
||
<!--
|
||
## Metrics Server
|
||
|
||
[Metrics Server](https://github.com/kubernetes-incubator/metrics-server) is a cluster-wide aggregator of resource usage data.
|
||
Starting from Kubernetes 1.8 it's deployed by default in clusters created by `kube-up.sh` script
|
||
as a Deployment object. If you use a different Kubernetes setup mechanism you can deploy it using the provided
|
||
[deployment yamls](https://github.com/kubernetes-incubator/metrics-server/tree/master/deploy).
|
||
It's supported in Kubernetes 1.7+ (see details below).
|
||
-->
|
||
## Metrics 服务器 {#metrics-server}
|
||
|
||
[Metrics 服务器](https://github.com/kubernetes-incubator/metrics-server)是集群范围资源使用数据的聚合器。
|
||
在由 `kube-up.sh` 脚本创建的集群中默认会以 Deployment 的形式被部署。
|
||
如果你使用其他 Kubernetes 安装方法,则可以使用提供的
|
||
[deployment yamls](https://github.com/kubernetes-incubator/metrics-server/tree/master/deploy)
|
||
来部署。
|
||
|
||
<!--
|
||
Metric server collects metrics from the Summary API, exposed by [Kubelet](/docs/admin/kubelet/) on each node.
|
||
-->
|
||
Metric server 从每个节点上的 [Kubelet](/zh/docs/reference/command-line-tools-reference/kubelet/)
|
||
公开的 Summary API 中采集指标信息。
|
||
|
||
<!--
|
||
Metrics Server registered in the main API server through
|
||
[Kubernetes aggregator](/docs/concepts/api-extension/apiserver-aggregation/),
|
||
which was introduced in Kubernetes 1.7.
|
||
-->
|
||
Metrics 服务器通过
|
||
[Kubernetes 聚合器](/zh/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation/)
|
||
注册到主 API 服务器。
|
||
|
||
<!--
|
||
Learn more about the metrics server in [the design doc](https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md).
|
||
-->
|
||
在[设计文档](https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md)中可以了解到有关 Metrics 服务器的更多信息。
|
||
|