309 lines
12 KiB
Markdown
309 lines
12 KiB
Markdown
---
|
||
title: Pod 开销
|
||
content_template: templates/concept
|
||
weight: 20
|
||
---
|
||
|
||
{{% capture overview %}}
|
||
|
||
{{< feature-state for_k8s_version="v1.18" state="beta" >}}
|
||
|
||
<!--
|
||
When you run a Pod on a Node, the Pod itself takes an amount of system resources. These
|
||
resources are additional to the resources needed to run the container(s) inside the Pod.
|
||
_Pod Overhead_ is a feature for accounting for the resources consumed by the Pod infrastructure
|
||
on top of the container requests & limits.
|
||
-->
|
||
|
||
在节点上运行 Pod 时,Pod 本身占用大量系统资源。这些资源是运行 Pod 内容器所需资源的附加资源。
|
||
_POD 开销_ 是一个特性,用于计算 Pod 基础设施在容器请求和限制之上消耗的资源。
|
||
|
||
{{% /capture %}}
|
||
|
||
|
||
{{% capture body %}}
|
||
|
||
<!--
|
||
## Pod Overhead
|
||
-->
|
||
|
||
## Pod 开销
|
||
|
||
<!--
|
||
In Kubernetes, the Pod's overhead is set at
|
||
[admission](/docs/reference/access-authn-authz/extensible-admission-controllers/#what-are-admission-webhooks)
|
||
time according to the overhead associated with the Pod's
|
||
[RuntimeClass](/docs/concepts/containers/runtime-class/).
|
||
-->
|
||
|
||
在 Kubernetes 中,Pod 的开销是根据与 Pod 的 [RuntimeClass](/docs/concepts/containers/runtime-class/) 相关联的开销在
|
||
[准入](/docs/reference/access-authn-authz/extensible-admission-controllers/#what-are-admission-webhooks) 时设置的。
|
||
|
||
<!--
|
||
When Pod Overhead is enabled, the overhead is considered in addition to the sum of container
|
||
resource requests when scheduling a Pod. Similarly, Kubelet will include the Pod overhead when sizing
|
||
the Pod cgroup, and when carrying out Pod eviction ranking.
|
||
-->
|
||
当启用 Pod 开销时,在调度 Pod 时,除了考虑容器资源请求的总和外,还要考虑 Pod 开销。类似地,Kubelet 将在确定 Pod cgroup 的大小和执行 Pod 驱逐排序时包含 Pod 开销。
|
||
|
||
<!--
|
||
## Enabling Pod Overhead {#set-up}
|
||
-->
|
||
## 启用 Pod 开销 {#set-up}
|
||
|
||
<!--
|
||
You need to make sure that the `PodOverhead`
|
||
[feature gate](/docs/reference/command-line-tools-reference/feature-gates/) is enabled (it is on by default as of 1.18)
|
||
across your cluster, and a `RuntimeClass` is utilized which defines the `overhead` field.
|
||
-->
|
||
您需要确保在集群中启用了 `PodOverhead` [特性门](/docs/reference/command-line-tools-reference/feature-gates/)(在 1.18 默认是开启的),以及一个用于定义 `overhead` 字段的 `RuntimeClass`。
|
||
|
||
<!--
|
||
## Usage example
|
||
-->
|
||
## 使用示例
|
||
|
||
<!--
|
||
To use the PodOverhead feature, you need a RuntimeClass that defines the `overhead` field. As
|
||
an example, you could use the following RuntimeClass definition with a virtualizing container runtime
|
||
that uses around 120MiB per Pod for the virtual machine and the guest OS:
|
||
-->
|
||
要使用 PodOverhead 特性,需要一个定义 `overhead` 字段的 RuntimeClass. 作为例子,可以在虚拟机和来宾操作系统中通过一个虚拟化容器运行时来定义 RuntimeClass 如下,其中每个 Pod 大约使用 120MiB:
|
||
|
||
```yaml
|
||
---
|
||
kind: RuntimeClass
|
||
apiVersion: node.k8s.io/v1beta1
|
||
metadata:
|
||
name: kata-fc
|
||
handler: kata-fc
|
||
overhead:
|
||
podFixed:
|
||
memory: "120Mi"
|
||
cpu: "250m"
|
||
```
|
||
|
||
<!--
|
||
Workloads which are created which specify the `kata-fc` RuntimeClass handler will take the memory and
|
||
cpu overheads into account for resource quota calculations, node scheduling, as well as Pod cgroup sizing.
|
||
|
||
Consider running the given example workload, test-pod:
|
||
-->
|
||
通过指定 `kata-fc` RuntimeClass 处理程序创建的工作负载会将内存和 cpu 开销计入资源配额计算、节点调度以及 Pod cgroup 分级。
|
||
|
||
假设我们运行下面给出的工作负载示例 test-pod:
|
||
|
||
```yaml
|
||
apiVersion: v1
|
||
kind: Pod
|
||
metadata:
|
||
name: test-pod
|
||
spec:
|
||
runtimeClassName: kata-fc
|
||
containers:
|
||
- name: busybox-ctr
|
||
image: busybox
|
||
stdin: true
|
||
tty: true
|
||
resources:
|
||
limits:
|
||
cpu: 500m
|
||
memory: 100Mi
|
||
- name: nginx-ctr
|
||
image: nginx
|
||
resources:
|
||
limits:
|
||
cpu: 1500m
|
||
memory: 100Mi
|
||
```
|
||
|
||
<!--
|
||
At admission time the RuntimeClass [admission controller](https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/)
|
||
updates the workload's PodSpec to include the `overhead` as described in the RuntimeClass. If the PodSpec already has this field defined,
|
||
the Pod will be rejected. In the given example, since only the RuntimeClass name is specified, the admission controller mutates the Pod
|
||
to include an `overhead`.
|
||
-->
|
||
在准入阶段 RuntimeClass [准入控制器](https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/) 更新工作负载的 PodSpec 以包含
|
||
RuntimeClass 中定义的 `overhead`. 如果 PodSpec 中该字段已定义,该 Pod 将会被拒绝。在这个例子中,由于只指定了 RuntimeClass 名称,所以准入控制器更新了 Pod, 包含了一个 `overhead`.
|
||
|
||
<!--
|
||
After the RuntimeClass admission controller, you can check the updated PodSpec:
|
||
-->
|
||
在 RuntimeClass 准入控制器之后,可以检验一下已更新的 PodSpec:
|
||
|
||
```bash
|
||
kubectl get pod test-pod -o jsonpath='{.spec.overhead}'
|
||
```
|
||
|
||
<!--
|
||
The output is:
|
||
-->
|
||
输出:
|
||
```
|
||
map[cpu:250m memory:120Mi]
|
||
```
|
||
|
||
<!--
|
||
If a ResourceQuota is defined, the sum of container requests as well as the
|
||
`overhead` field are counted.
|
||
-->
|
||
如果定义了 ResourceQuata, 则容器请求的总量以及 `overhead` 字段都将计算在内。
|
||
|
||
<!--
|
||
When the kube-scheduler is deciding which node should run a new Pod, the scheduler considers that Pod's
|
||
`overhead` as well as the sum of container requests for that Pod. For this example, the scheduler adds the
|
||
requests and the overhead, then looks for a node that has 2.25 CPU and 320 MiB of memory available.
|
||
-->
|
||
当 kube-scheduler 决定在哪一个节点调度运行新的 Pod 时,调度器会兼顾该 Pod 的 `overhead` 以及该 Pod 的容器请求总量。在这个示例中,调度器将资源请求和开销相加,然后寻找具备 2.25 CPU 和 320 MiB 内存可用的节点。
|
||
|
||
<!--
|
||
Once a Pod is scheduled to a node, the kubelet on that node creates a new {{< glossary_tooltip text="cgroup" term_id="cgroup" >}}
|
||
for the Pod. It is within this pod that the underlying container runtime will create containers. -->
|
||
一旦 Pod 调度到了某个节点, 该节点上的 kubelet 将为该 Pod 新建一个 {{< glossary_tooltip text="cgroup" term_id="cgroup" >}}. 底层容器运行时将在这个 pod 中创建容器。
|
||
|
||
<!--
|
||
If the resource has a limit defined for each container (Guaranteed QoS or Bustrable QoS with limits defined),
|
||
the kubelet will set an upper limit for the pod cgroup associated with that resource (cpu.cfs_quota_us for CPU
|
||
and memory.limit_in_bytes memory). This upper limit is based on the sum of the container limits plus the `overhead`
|
||
defined in the PodSpec.
|
||
-->
|
||
如果该资源对每一个容器都定义了一个限制(定义了受限的 Guaranteed QoS 或者 Bustrable QoS),kubelet 会为与该资源(CPU 的 cpu.cfs_quota_us 以及内存的 memory.limit_in_bytes)
|
||
相关的 pod cgroup 设定一个上限。该上限基于容器限制总量与 PodSpec 中定义的 `overhead` 之和。
|
||
|
||
<!--
|
||
For CPU, if the Pod is Guaranteed or Burstable QoS, the kubelet will set `cpu.shares` based on the sum of container
|
||
requests plus the `overhead` defined in the PodSpec.
|
||
-->
|
||
对于 CPU, 如果 Pod 的 QoS 是 Guaranteed 或者 Burstable, kubelet 会基于容器请求总量与 PodSpec 中定义的 `overhead` 之和设置 `cpu.shares`.
|
||
|
||
<!--
|
||
Looking at our example, verify the container requests for the workload:
|
||
-->
|
||
请看这个例子,验证工作负载的容器请求:
|
||
```bash
|
||
kubectl get pod test-pod -o jsonpath='{.spec.containers[*].resources.limits}'
|
||
```
|
||
|
||
<!--
|
||
The total container requests are 2000m CPU and 200MiB of memory:
|
||
-->
|
||
容器请求总计 2000m CPU 和 200MiB 内存:
|
||
```
|
||
map[cpu: 500m memory:100Mi] map[cpu:1500m memory:100Mi]
|
||
```
|
||
|
||
<!--
|
||
Check this against what is observed by the node:
|
||
-->
|
||
对照从节点观察到的情况来检查一下:
|
||
```bash
|
||
kubectl describe node | grep test-pod -B2
|
||
```
|
||
|
||
<!--
|
||
The output shows 2250m CPU and 320MiB of memory are requested, which includes PodOverhead:
|
||
-->
|
||
该输出显示请求了 2250m CPU 以及 320MiB 内存,包含了 PodOverhead 在内:
|
||
```
|
||
Namespace Name CPU Requests CPU Limits Memory Requests Memory Limits AGE
|
||
--------- ---- ------------ ---------- --------------- ------------- ---
|
||
default test-pod 2250m (56%) 2250m (56%) 320Mi (1%) 320Mi (1%) 36m
|
||
```
|
||
|
||
<!--
|
||
## Verify Pod cgroup limits
|
||
-->
|
||
## 验证 Pod cgroup 限制
|
||
|
||
<!--
|
||
Check the Pod's memory cgroups on the node where the workload is running. In the following example, [`crictl`](https://github.com/kubernetes-sigs/cri-tools/blob/master/docs/crictl.md)
|
||
is used on the node, which provides a CLI for CRI-compatible container runtimes. This is an
|
||
advanced example to show PodOverhead behavior, and it is not expected that users should need to check
|
||
cgroups directly on the node.
|
||
|
||
First, on the particular node, determine the Pod identifier:ying
|
||
-->
|
||
在工作负载所运行的节点上检查 Pod 的内存 cgroups. 在接下来的例子中,将在该节点上使用具备 CRI 兼容的容器运行时命令行工具 [`crictl`](https://github.com/kubernetes-sigs/cri-tools/blob/master/docs/crictl.md).
|
||
这是一个展示 PodOverhead 行为的进阶示例,用户并不需要直接在该节点上检查 cgroups.
|
||
|
||
首先在特定的节点上确定该 Pod 的标识符:ying
|
||
|
||
<!--
|
||
```bash
|
||
# Run this on the node where the Pod is scheduled
|
||
-->
|
||
```bash
|
||
# 在该 Pod 调度的节点上执行如下命令:
|
||
POD_ID="$(sudo crictl pods --name test-pod -q)"
|
||
```
|
||
|
||
<!--
|
||
From this, you can determine the cgroup path for the Pod:
|
||
-->
|
||
可以依此判断该 Pod 的 cgroup 路径:
|
||
|
||
<!--
|
||
```bash
|
||
# Run this on the node where the Pod is scheduled
|
||
-->
|
||
```bash
|
||
# 在该 Pod 调度的节点上执行如下命令:
|
||
sudo crictl inspectp -o=json $POD_ID | grep cgroupsPath
|
||
```
|
||
|
||
<!--
|
||
The resulting cgroup path includes the Pod's `pause` container. The Pod level cgroup is one directory above.
|
||
-->
|
||
执行结果的 cgroup 路径中包含了该 Pod 的 `pause` 容器。Pod 级别的 cgroup 即上面的一个目录。
|
||
```
|
||
"cgroupsPath": "/kubepods/podd7f4b509-cf94-4951-9417-d1087c92a5b2/7ccf55aee35dd16aca4189c952d83487297f3cd760f1bbf09620e206e7d0c27a"
|
||
```
|
||
|
||
<!--
|
||
In this specific case, the pod cgroup path is `kubepods/podd7f4b509-cf94-4951-9417-d1087c92a5b2`. Verify the Pod level cgroup setting for memory:
|
||
-->
|
||
在这个例子中,该 pod 的 cgroup 路径是 `kubepods/podd7f4b509-cf94-4951-9417-d1087c92a5b2`。验证内存的 Pod 级别 cgroup 设置:
|
||
|
||
<!--
|
||
```bash
|
||
# Run this on the node where the Pod is scheduled.
|
||
# Also, change the name of the cgroup to match the cgroup allocated for your pod.
|
||
-->
|
||
```bash
|
||
# 在该 Pod 调度的节点上执行这个命令。
|
||
# 另外,修改 cgroup 的名称以匹配为该 pod 分配的 cgroup。
|
||
cat /sys/fs/cgroup/memory/kubepods/podd7f4b509-cf94-4951-9417-d1087c92a5b2/memory.limit_in_bytes
|
||
```
|
||
|
||
<!--
|
||
This is 320 MiB, as expected:
|
||
-->
|
||
和预期的一样是 320 MiB
|
||
```
|
||
335544320
|
||
```
|
||
|
||
<!--
|
||
### Observability
|
||
-->
|
||
### 可观察性
|
||
|
||
<!--
|
||
A `kube_pod_overhead` metric is available in [kube-state-metrics](https://github.com/kubernetes/kube-state-metrics)
|
||
to help identify when PodOverhead is being utilized and to help observe stability of workloads
|
||
running with a defined Overhead. This functionality is not available in the 1.9 release of
|
||
kube-state-metrics, but is expected in a following release. Users will need to build kube-state-metrics
|
||
from source in the meantime.
|
||
-->
|
||
在 [kube-state-metrics](https://github.com/kubernetes/kube-state-metrics) 中可以通过 `kube_pod_overhead` 指标来协助确定何时使用 PodOverhead 以及协助观察以一个既定开销运行的工作负载的稳定性。
|
||
该特性在 kube-state-metrics 的 1.9 发行版本中不可用,不过预计将在后续版本中发布。在此之前,用户需要从源代码构建 kube-state-metrics.
|
||
|
||
{{% /capture %}}
|
||
|
||
{{% capture whatsnext %}}
|
||
|
||
* [RuntimeClass](/docs/concepts/containers/runtime-class/)
|
||
* [PodOverhead 设计](https://github.com/kubernetes/enhancements/blob/master/keps/sig-node/20190226-pod-overhead.md)
|
||
|
||
{{% /capture %}}
|