503 lines
18 KiB
Markdown
503 lines
18 KiB
Markdown
---
|
||
title: 使用工作队列进行粗粒度并行处理
|
||
min-kubernetes-server-version: v1.8
|
||
content_type: task
|
||
weight: 20
|
||
---
|
||
|
||
<!--
|
||
---
|
||
title: Coarse Parallel Processing Using a Work Queue
|
||
min-kubernetes-server-version: v1.8
|
||
content_type: task
|
||
weight: 20
|
||
---
|
||
-->
|
||
|
||
<!-- overview -->
|
||
|
||
<!--
|
||
In this example, we will run a Kubernetes Job with multiple parallel
|
||
worker processes.
|
||
|
||
In this example, as each pod is created, it picks up one unit of work
|
||
from a task queue, completes it, deletes it from the queue, and exits.
|
||
|
||
Here is an overview of the steps in this example:
|
||
|
||
1. **Start a message queue service.** In this example, we use RabbitMQ, but you could use another
|
||
one. In practice you would set up a message queue service once and reuse it for many jobs.
|
||
1. **Create a queue, and fill it with messages.** Each message represents one task to be done. In
|
||
this example, a message is an integer that we will do a lengthy computation on.
|
||
1. **Start a Job that works on tasks from the queue**. The Job starts several pods. Each pod takes
|
||
one task from the message queue, processes it, and repeats until the end of the queue is reached.
|
||
-->
|
||
本例中,我们会运行包含多个并行工作进程的 Kubernetes Job。
|
||
|
||
本例中,每个 Pod 一旦被创建,会立即从任务队列中取走一个工作单元并完成它,然后将工作单元从队列中删除后再退出。
|
||
|
||
下面是本次示例的主要步骤:
|
||
|
||
1. **启动一个消息队列服务** 本例中,我们使用 RabbitMQ,你也可以用其他的消息队列服务。在实际工作环境中,你可以创建一次消息队列服务然后在多个任务中重复使用。
|
||
|
||
1. **创建一个队列,放上消息数据** 每个消息表示一个要执行的任务。本例中,每个消息是一个整数值。我们将基于这个整数值执行很长的计算操作。
|
||
|
||
1. **启动一个在队列中执行这些任务的 Job**。该 Job 启动多个 Pod。每个 Pod 从消息队列中取走一个任务,处理它,然后重复执行,直到队列的队尾。
|
||
|
||
|
||
## {{% heading "prerequisites" %}}
|
||
|
||
|
||
<!--
|
||
Be familiar with the basic,
|
||
non-parallel, use of [Job](/docs/concepts/jobs/run-to-completion-finite-workloads/).
|
||
-->
|
||
|
||
要熟悉 Job 基本用法(非并行的),请参考
|
||
[Job](/zh/docs/concepts/workloads/controllers/job/)。
|
||
|
||
{{< include "task-tutorial-prereqs.md" >}} {{< version-check >}}
|
||
|
||
<!-- steps -->
|
||
|
||
<!--
|
||
## Starting a message queue service
|
||
|
||
This example uses RabbitMQ, however, you can adapt the example to use another AMQP-type message service.
|
||
|
||
In practice you could set up a message queue service once in a
|
||
cluster and reuse it for many jobs, as well as for long-running services.
|
||
|
||
Start RabbitMQ as follows:
|
||
-->
|
||
## 启动消息队列服务
|
||
|
||
本例使用了 RabbitMQ,但你可以更改该示例,使用其他 AMQP 类型的消息服务。
|
||
|
||
在实际工作中,在集群中一次性部署某个消息队列服务,之后在很多 Job 中复用,包括需要长期运行的服务。
|
||
|
||
按下面的方法启动 RabbitMQ:
|
||
|
||
```shell
|
||
kubectl create -f https://raw.githubusercontent.com/kubernetes/kubernetes/release-1.3/examples/celery-rabbitmq/rabbitmq-service.yaml
|
||
```
|
||
```
|
||
service "rabbitmq-service" created
|
||
```
|
||
|
||
```shell
|
||
kubectl create -f https://raw.githubusercontent.com/kubernetes/kubernetes/release-1.3/examples/celery-rabbitmq/rabbitmq-controller.yaml
|
||
```
|
||
|
||
```
|
||
replicationcontroller "rabbitmq-controller" created
|
||
```
|
||
|
||
<!--
|
||
We will only use the rabbitmq part from the [celery-rabbitmq example](https://github.com/kubernetes/kubernetes/tree/release-1.3/examples/celery-rabbitmq).
|
||
-->
|
||
|
||
我们仅用到 [celery-rabbitmq 示例](https://github.com/kubernetes/kubernetes/tree/release-1.3/examples/celery-rabbitmq) 中描述的部分功能。
|
||
|
||
<!--
|
||
## Testing the message queue service
|
||
|
||
Now, we can experiment with accessing the message queue. We will
|
||
create a temporary interactive pod, install some tools on it,
|
||
and experiment with queues.
|
||
|
||
First create a temporary interactive Pod.
|
||
-->
|
||
## 测试消息队列服务
|
||
|
||
现在,我们可以试着访问消息队列。我们将会创建一个临时的可交互的 Pod,在它上面安装一些工具,然后用队列做实验。
|
||
|
||
首先创建一个临时的可交互的 Pod:
|
||
|
||
```shell
|
||
# 创建一个临时的可交互的 Pod
|
||
kubectl run -i --tty temp --image ubuntu:14.04
|
||
```
|
||
```
|
||
Waiting for pod default/temp-loe07 to be running, status is Pending, pod ready: false
|
||
... [ previous line repeats several times .. hit return when it stops ] ...
|
||
```
|
||
|
||
<!--
|
||
Note that your pod name and command prompt will be different.
|
||
|
||
Next install the `amqp-tools` so we can work with message queues.
|
||
-->
|
||
请注意你的 Pod 名称和命令提示符将会不同。
|
||
|
||
接下来安装 `amqp-tools` ,这样我们就能用消息队列了。
|
||
|
||
```shell
|
||
# 安装一些工具
|
||
root@temp-loe07:/# apt-get update
|
||
.... [ lots of output ] ....
|
||
root@temp-loe07:/# apt-get install -y curl ca-certificates amqp-tools python dnsutils
|
||
.... [ lots of output ] ....
|
||
```
|
||
|
||
<!--
|
||
Later, we will make a docker image that includes these packages.
|
||
|
||
Next, we will check that we can discover the rabbitmq service:
|
||
-->
|
||
|
||
后续,我们将制作一个包含这些包的 Docker 镜像。
|
||
|
||
接着,我们将要验证我们发现 RabbitMQ 服务:
|
||
|
||
<!--
|
||
# Note the rabbitmq-service has a DNS name, provided by Kubernetes:
|
||
-->
|
||
```
|
||
# 请注意 rabbitmq-service 有Kubernetes 提供的 DNS 名称,
|
||
|
||
root@temp-loe07:/# nslookup rabbitmq-service
|
||
Server: 10.0.0.10
|
||
Address: 10.0.0.10#53
|
||
|
||
Name: rabbitmq-service.default.svc.cluster.local
|
||
Address: 10.0.147.152
|
||
|
||
# 你的 IP 地址会不同
|
||
```
|
||
|
||
<!--
|
||
If Kube-DNS is not setup correctly, the previous step may not work for you.
|
||
You can also find the service IP in an env var:
|
||
-->
|
||
如果 Kube-DNS 没有正确安装,上一步可能会出错。
|
||
你也可以在环境变量中找到服务 IP。
|
||
|
||
<!--
|
||
# Your address will vary.
|
||
-->
|
||
```
|
||
# env | grep RABBIT | grep HOST
|
||
RABBITMQ_SERVICE_SERVICE_HOST=10.0.147.152
|
||
|
||
# 你的 IP 地址会有所不同
|
||
```
|
||
|
||
<!--
|
||
Next we will verify we can create a queue, and publish and consume messages.
|
||
-->
|
||
接着我们将要确认可以创建队列,并能发布消息和消费消息。
|
||
|
||
<!--
|
||
# In the next line, rabbitmq-service is the hostname where the rabbitmq-service
|
||
# can be reached. 5672 is the standard port for rabbitmq.
|
||
|
||
# If you could not resolve "rabbitmq-service" in the previous step,
|
||
# then use this command instead:
|
||
# root@temp-loe07:/# BROKER_URL=amqp://guest:guest@$RABBITMQ_SERVICE_SERVICE_HOST:5672
|
||
# Now create a queue:
|
||
# and publish a message to it:
|
||
# and get it back.
|
||
-->
|
||
|
||
```shell
|
||
# 下一行,rabbitmq-service 是访问 rabbitmq-service 的主机名。5672是 rabbitmq 的标准端口。
|
||
|
||
root@temp-loe07:/# export BROKER_URL=amqp://guest:guest@rabbitmq-service:5672
|
||
|
||
# 如果上一步中你不能解析 "rabbitmq-service",可以用下面的命令替换:
|
||
# root@temp-loe07:/# BROKER_URL=amqp://guest:guest@$RABBITMQ_SERVICE_SERVICE_HOST:5672
|
||
|
||
# 现在创建队列:
|
||
|
||
root@temp-loe07:/# /usr/bin/amqp-declare-queue --url=$BROKER_URL -q foo -d foo
|
||
|
||
# 向它推送一条消息:
|
||
|
||
root@temp-loe07:/# /usr/bin/amqp-publish --url=$BROKER_URL -r foo -p -b Hello
|
||
|
||
# 然后取回它.
|
||
|
||
root@temp-loe07:/# /usr/bin/amqp-consume --url=$BROKER_URL -q foo -c 1 cat && echo
|
||
Hello
|
||
root@temp-loe07:/#
|
||
```
|
||
|
||
<!--
|
||
In the last command, the `amqp-consume` tool takes one message (`-c 1`)
|
||
from the queue, and passes that message to the standard input of an arbitrary command. In this case, the program `cat` prints out the characters read from standard input, and the echo adds a carriage
|
||
return so the example is readable.
|
||
-->
|
||
|
||
最后一个命令中, `amqp-consume` 工具从队列中取走了一个消息,并把该消息传递给了随机命令的标准输出。
|
||
在这种情况下,`cat` 会打印它从标准输入中读取的字符,echo 会添加回车符以便示例可读。
|
||
|
||
<!--
|
||
## Filling the Queue with tasks
|
||
|
||
Now let's fill the queue with some "tasks". In our example, our tasks are strings to be
|
||
printed.
|
||
|
||
In a practice, the content of the messages might be:
|
||
|
||
- names of files to that need to be processed
|
||
- extra flags to the program
|
||
- ranges of keys in a database table
|
||
- configuration parameters to a simulation
|
||
- frame numbers of a scene to be rendered
|
||
-->
|
||
## 为队列增加任务
|
||
|
||
现在让我们给队列增加一些任务。在我们的示例中,任务是多个待打印的字符串。
|
||
|
||
实践中,消息的内容可以是:
|
||
|
||
- 待处理的文件名
|
||
- 程序额外的参数
|
||
- 数据库表的关键字范围
|
||
- 模拟任务的配置参数
|
||
- 待渲染的场景的帧序列号
|
||
|
||
<!--
|
||
In practice, if there is large data that is needed in a read-only mode by all pods
|
||
of the Job, you will typically put that in a shared file system like NFS and mount
|
||
that readonly on all the pods, or the program in the pod will natively read data from
|
||
a cluster file system like HDFS.
|
||
|
||
For our example, we will create the queue and fill it using the amqp command line tools.
|
||
In practice, you might write a program to fill the queue using an amqp client library.
|
||
-->
|
||
|
||
本例中,如果有大量的数据需要被 Job 的所有 Pod 读取,典型的做法是把它们放在一个共享文件系统中,如NFS,并以只读的方式挂载到所有 Pod,或者 Pod 中的程序从类似 HDFS 的集群文件系统中读取。
|
||
|
||
例如,我们创建队列并使用 amqp 命令行工具向队列中填充消息。实践中,你可以写个程序来利用 amqp 客户端库来填充这些队列。
|
||
|
||
```shell
|
||
/usr/bin/amqp-declare-queue --url=$BROKER_URL -q job1 -d job1
|
||
|
||
for f in apple banana cherry date fig grape lemon melon
|
||
do
|
||
/usr/bin/amqp-publish --url=$BROKER_URL -r job1 -p -b $f
|
||
done
|
||
```
|
||
|
||
<!--
|
||
So, we filled the queue with 8 messages.
|
||
|
||
## Create an Image
|
||
|
||
Now we are ready to create an image that we will run as a job.
|
||
|
||
We will use the `amqp-consume` utility to read the message
|
||
from the queue and run our actual program. Here is a very simple
|
||
example program:
|
||
-->
|
||
这样,我们给队列中填充了8个消息。
|
||
|
||
## 创建镜像
|
||
|
||
现在我们可以创建一个做为 Job 来运行的镜像。
|
||
|
||
我们将用 `amqp-consume` 来从队列中读取消息并实际运行我们的程序。这里给出一个非常简单的示例程序:
|
||
|
||
{{< codenew language="python" file="application/job/rabbitmq/worker.py" >}}
|
||
|
||
<!--
|
||
Now, build an image. If you are working in the source
|
||
tree, then change directory to `examples/job/work-queue-1`.
|
||
Otherwise, make a temporary directory, change to it,
|
||
download the [Dockerfile](/examples/application/job/rabbitmq/Dockerfile),
|
||
and [worker.py](/examples/application/job/rabbitmq/worker.py). In either case,
|
||
build the image with this command:
|
||
-->
|
||
|
||
现在,编译镜像。如果你在用源代码树,那么切换到目录 `examples/job/work-queue-1`。
|
||
否则的话,创建一个临时目录,切换到这个目录。下载
|
||
[Dockerfile](/examples/application/job/rabbitmq/Dockerfile),和
|
||
[worker.py](/examples/application/job/rabbitmq/worker.py)。
|
||
无论哪种情况,都可以用下面的命令编译镜像
|
||
|
||
```shell
|
||
docker build -t job-wq-1 .
|
||
```
|
||
|
||
<!--
|
||
For the [Docker Hub](https://hub.docker.com/), tag your app image with
|
||
your username and push to the Hub with the below commands. Replace
|
||
`<username>` with your Hub username.
|
||
-->
|
||
对于 [Docker Hub](https://hub.docker.com/), 给你的应用镜像打上标签,
|
||
标签为你的用户名,然后用下面的命令推送到 Hub。用你的 Hub 用户名替换 `<username>`。
|
||
|
||
```shell
|
||
docker tag job-wq-1 <username>/job-wq-1
|
||
docker push <username>/job-wq-1
|
||
```
|
||
|
||
<!--
|
||
If you are using [Google Container
|
||
Registry](https://cloud.google.com/tools/container-registry/), tag
|
||
your app image with your project ID, and push to GCR. Replace
|
||
`<project>` with your project ID.
|
||
-->
|
||
如果你在用[谷歌容器仓库](https://cloud.google.com/tools/container-registry/),
|
||
用你的项目 ID 作为标签打到你的应用镜像上,然后推送到 GCR。
|
||
用你的项目 ID 替换 `<project>`。
|
||
|
||
```shell
|
||
docker tag job-wq-1 gcr.io/<project>/job-wq-1
|
||
gcloud docker -- push gcr.io/<project>/job-wq-1
|
||
```
|
||
|
||
<!--
|
||
## Defining a Job
|
||
|
||
Here is a job definition. You'll need to make a copy of the Job and edit the
|
||
image to match the name you used, and call it `./job.yaml`.
|
||
-->
|
||
## 定义 Job
|
||
|
||
这里给出一个 Job 定义 yaml文件。你需要拷贝一份并编辑镜像以匹配你使用的名称,保存为 `./job.yaml`。
|
||
|
||
{{< codenew file="application/job/rabbitmq/job.yaml" >}}
|
||
|
||
<!--
|
||
In this example, each pod works on one item from the queue and then exits.
|
||
So, the completion count of the Job corresponds to the number of work items
|
||
done. So we set, `.spec.completions: 8` for the example, since we put 8 items in the queue.
|
||
|
||
## Running the Job
|
||
|
||
So, now run the Job:
|
||
-->
|
||
本例中,每个 Pod 使用队列中的一个消息然后退出。这样,Job 的完成计数就代表了完成的工作项的数量。本例中我们设置 `.spec.completions: 8`,因为我们放了8项内容在队列中。
|
||
|
||
## 运行 Job
|
||
|
||
现在我们运行 Job:
|
||
|
||
```shell
|
||
kubectl create -f ./job.yaml
|
||
```
|
||
|
||
<!--
|
||
Now wait a bit, then check on the job.
|
||
-->
|
||
|
||
稍等片刻,然后检查 Job。
|
||
|
||
```shell
|
||
kubectl describe jobs/job-wq-1
|
||
```
|
||
|
||
```
|
||
Name: job-wq-1
|
||
Namespace: default
|
||
Selector: controller-uid=41d75705-92df-11e7-b85e-fa163ee3c11f
|
||
Labels: controller-uid=41d75705-92df-11e7-b85e-fa163ee3c11f
|
||
job-name=job-wq-1
|
||
Annotations: <none>
|
||
Parallelism: 2
|
||
Completions: 8
|
||
Start Time: Wed, 06 Sep 2017 16:42:02 +0800
|
||
Pods Statuses: 0 Running / 8 Succeeded / 0 Failed
|
||
Pod Template:
|
||
Labels: controller-uid=41d75705-92df-11e7-b85e-fa163ee3c11f
|
||
job-name=job-wq-1
|
||
Containers:
|
||
c:
|
||
Image: gcr.io/causal-jigsaw-637/job-wq-1
|
||
Port:
|
||
Environment:
|
||
BROKER_URL: amqp://guest:guest@rabbitmq-service:5672
|
||
QUEUE: job1
|
||
Mounts: <none>
|
||
Volumes: <none>
|
||
Events:
|
||
FirstSeen LastSeen Count From SubobjectPath Type Reason Message
|
||
───────── ──────── ───── ──── ───────────── ────── ────── ───────
|
||
27s 27s 1 {job } Normal SuccessfulCreate Created pod: job-wq-1-hcobb
|
||
27s 27s 1 {job } Normal SuccessfulCreate Created pod: job-wq-1-weytj
|
||
27s 27s 1 {job } Normal SuccessfulCreate Created pod: job-wq-1-qaam5
|
||
27s 27s 1 {job } Normal SuccessfulCreate Created pod: job-wq-1-b67sr
|
||
26s 26s 1 {job } Normal SuccessfulCreate Created pod: job-wq-1-xe5hj
|
||
15s 15s 1 {job } Normal SuccessfulCreate Created pod: job-wq-1-w2zqe
|
||
14s 14s 1 {job } Normal SuccessfulCreate Created pod: job-wq-1-d6ppa
|
||
14s 14s 1 {job } Normal SuccessfulCreate Created pod: job-wq-1-p17e0
|
||
```
|
||
|
||
<!--
|
||
All our pods succeeded. Yay.
|
||
-->
|
||
我们所有的 Pod 都成功了。耶!
|
||
|
||
<!-- discussion -->
|
||
|
||
<!--
|
||
## Alternatives
|
||
|
||
This approach has the advantage that you
|
||
do not need to modify your "worker" program to be aware that there is a work queue.
|
||
|
||
It does require that you run a message queue service.
|
||
If running a queue service is inconvenient, you may
|
||
want to consider one of the other [job patterns](/docs/concepts/jobs/run-to-completion-finite-workloads/#job-patterns).
|
||
-->
|
||
## 替代方案
|
||
|
||
本文所讲述的处理方法的好处是你不需要修改你的 "worker" 程序使其知道工作队列的存在。
|
||
|
||
本文所描述的方法需要你运行一个消息队列服务。如果不方便运行消息队列服务,你也许会考虑另外一种
|
||
[任务模式](/zh/docs/concepts/workloads/controllers/job/#job-patterns)。
|
||
|
||
<!--
|
||
This approach creates a pod for every work item. If your work items only take a few seconds,
|
||
though, creating a Pod for every work item may add a lot of overhead. Consider another
|
||
[example](/docs/tasks/job/fine-parallel-processing-work-queue/), that executes multiple work items per Pod.
|
||
|
||
In this example, we used use the `amqp-consume` utility to read the message
|
||
from the queue and run our actual program. This has the advantage that you
|
||
do not need to modify your program to be aware of the queue.
|
||
A [different example](/docs/tasks/job/fine-parallel-processing-work-queue/), shows how to
|
||
communicate with the work queue using a client library.
|
||
-->
|
||
|
||
本文所述的方法为每个工作项创建了一个 Pod。
|
||
如果你的工作项仅需数秒钟,为每个工作项创建 Pod会增加很多的常规消耗。
|
||
可以考虑另外的方案请参考[示例](/zh/docs/tasks/job/fine-parallel-processing-work-queue/),
|
||
这种方案可以实现每个 Pod 执行多个工作项。
|
||
|
||
示例中,我们使用 `amqp-consume` 从消息队列读取消息并执行我们真正的程序。
|
||
这样的好处是你不需要修改你的程序使其知道队列的存在。
|
||
要了解怎样使用客户端库和工作队列通信,请参考
|
||
[不同的示例](/zh/docs/tasks/job/fine-parallel-processing-work-queue/)。
|
||
|
||
<!--
|
||
## Caveats
|
||
|
||
If the number of completions is set to less than the number of items in the queue, then
|
||
not all items will be processed.
|
||
|
||
If the number of completions is set to more than the number of items in the queue,
|
||
then the Job will not appear to be completed, even though all items in the queue
|
||
have been processed. It will start additional pods which will block waiting
|
||
for a message.
|
||
|
||
There is an unlikely race with this pattern. If the container is killed in between the time
|
||
that the message is acknowledged by the amqp-consume command and the time that the container
|
||
exits with success, or if the node crashes before the kubelet is able to post the success of the pod
|
||
back to the api-server, then the Job will not appear to be complete, even though all items
|
||
in the queue have been processed.
|
||
-->
|
||
## 友情提醒
|
||
|
||
如果设置的完成数量小于队列中的消息数量,会导致一部分消息项不会被执行。
|
||
|
||
如果设置的完成数量大于队列中的消息数量,当队列中所有的消息都处理完成后,
|
||
Job 也会显示为未完成。Job 将创建 Pod 并阻塞等待消息输入。
|
||
|
||
当发生下面两种情况时,即使队列中所有的消息都处理完了,Job 也不会显示为完成状态:
|
||
* 在 amqp-consume 命令拿到消息和容器成功退出之间的时间段内,执行杀死容器操作;
|
||
* 在 kubelet 向 api-server 传回 Pod 成功运行之前,发生节点崩溃。
|
||
|