342 lines
13 KiB
Markdown
342 lines
13 KiB
Markdown
---
|
||
content_type: concept
|
||
title: 调度 GPUs
|
||
description: 配置和调度 GPU 成一类资源以供集群中节点使用。
|
||
---
|
||
<!--
|
||
reviewers:
|
||
- vishh
|
||
content_type: concept
|
||
title: Schedule GPUs
|
||
description: Configure and schedule GPUs for use as a resource by nodes in a cluster.
|
||
-->
|
||
|
||
<!-- overview -->
|
||
|
||
{{< feature-state state="beta" for_k8s_version="v1.10" >}}
|
||
|
||
<!--
|
||
Kubernetes includes **experimental** support for managing AMD and NVIDIA GPUs
|
||
(graphical processing units) across several nodes.
|
||
|
||
This page describes how users can consume GPUs across different Kubernetes versions
|
||
and the current limitations.
|
||
-->
|
||
Kubernetes 支持对节点上的 AMD 和 NVIDIA GPU (图形处理单元)进行管理,目前处于**实验**状态。
|
||
|
||
本页介绍用户如何在不同的 Kubernetes 版本中使用 GPU,以及当前存在的一些限制。
|
||
|
||
<!-- body -->
|
||
|
||
<!--
|
||
## Using device plugins
|
||
|
||
Kubernetes implements {{< glossary_tooltip text="Device Plugins" term_id="device-plugin" >}}
|
||
to let Pods access specialized hardware features such as GPUs.
|
||
|
||
As an administrator, you have to install GPU drivers from the corresponding
|
||
hardware vendor on the nodes and run the corresponding device plugin from the
|
||
GPU vendor:
|
||
-->
|
||
## 使用设备插件 {#using-device-plugins}
|
||
|
||
Kubernetes 实现了{{< glossary_tooltip text="设备插件(Device Plugins)" term_id="device-plugin" >}}
|
||
以允许 Pod 访问类似 GPU 这类特殊的硬件功能特性。
|
||
|
||
作为集群管理员,你要在节点上安装来自对应硬件厂商的 GPU 驱动程序,并运行
|
||
来自 GPU 厂商的对应的设备插件。
|
||
|
||
* [AMD](#deploying-amd-gpu-device-plugin)
|
||
* [NVIDIA](#deploying-nvidia-gpu-device-plugin)
|
||
|
||
<!--
|
||
When the above conditions are true, Kubernetes will expose `amd.com/gpu` or
|
||
`nvidia.com/gpu` as a schedulable resource.
|
||
|
||
You can consume these GPUs from your containers by requesting
|
||
`<vendor>.com/gpu` the same way you request `cpu` or `memory`.
|
||
However, there are some limitations in how you specify the resource requirements
|
||
when using GPUs:
|
||
-->
|
||
当以上条件满足时,Kubernetes 将暴露 `amd.com/gpu` 或 `nvidia.com/gpu` 为
|
||
可调度的资源。
|
||
|
||
你可以通过请求 `<vendor>.com/gpu` 资源来使用 GPU 设备,就像你为 CPU
|
||
和内存所做的那样。
|
||
不过,使用 GPU 时,在如何指定资源需求这个方面还是有一些限制的:
|
||
|
||
<!--
|
||
- GPUs are only supposed to be specified in the `limits` section, which means:
|
||
* You can specify GPU `limits` without specifying `requests` because
|
||
Kubernetes will use the limit as the request value by default.
|
||
* You can specify GPU in both `limits` and `requests` but these two values
|
||
must be equal.
|
||
* You cannot specify GPU `requests` without specifying `limits`.
|
||
- Containers (and Pods) do not share GPUs. There's no overcommitting of GPUs.
|
||
- Each container can request one or more GPUs. It is not possible to request a
|
||
fraction of a GPU.
|
||
-->
|
||
- GPUs 只能设置在 `limits` 部分,这意味着:
|
||
* 你可以指定 GPU 的 `limits` 而不指定其 `requests`,Kubernetes 将使用限制
|
||
值作为默认的请求值;
|
||
* 你可以同时指定 `limits` 和 `requests`,不过这两个值必须相等。
|
||
* 你不可以仅指定 `requests` 而不指定 `limits`。
|
||
- 容器(以及 Pod)之间是不共享 GPU 的。GPU 也不可以过量分配(Overcommitting)。
|
||
- 每个容器可以请求一个或者多个 GPU,但是用小数值来请求部分 GPU 是不允许的。
|
||
|
||
<!--
|
||
Here's an example:
|
||
-->
|
||
```yaml
|
||
apiVersion: v1
|
||
kind: Pod
|
||
metadata:
|
||
name: cuda-vector-add
|
||
spec:
|
||
restartPolicy: OnFailure
|
||
containers:
|
||
- name: cuda-vector-add
|
||
# https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile
|
||
image: "k8s.gcr.io/cuda-vector-add:v0.1"
|
||
resources:
|
||
limits:
|
||
nvidia.com/gpu: 1 # requesting 1 GPU
|
||
```
|
||
|
||
<!--
|
||
### Deploying AMD GPU device plugin
|
||
|
||
The [official AMD GPU device plugin](https://github.com/RadeonOpenCompute/k8s-device-plugin)
|
||
has the following requirements:
|
||
-->
|
||
### 部署 AMD GPU 设备插件 {#deploying-amd-gpu-device-plugin}
|
||
|
||
[官方的 AMD GPU 设备插件](https://github.com/RadeonOpenCompute/k8s-device-plugin) 有以下要求:
|
||
|
||
<!--
|
||
- Kubernetes nodes have to be pre-installed with AMD GPU Linux driver.
|
||
|
||
To deploy the AMD device plugin once your cluster is running and the above
|
||
requirements are satisfied:
|
||
```
|
||
# For Kubernetes v1.9
|
||
kubectl create -f https://raw.githubusercontent.com/RadeonOpenCompute/k8s-device-plugin/r1.9/k8s-ds-amdgpu-dp.yaml
|
||
|
||
# For Kubernetes v1.10
|
||
kubectl create -f https://raw.githubusercontent.com/RadeonOpenCompute/k8s-device-plugin/r1.10/k8s-ds-amdgpu-dp.yaml
|
||
```
|
||
-->
|
||
- Kubernetes 节点必须预先安装 AMD GPU 的 Linux 驱动。
|
||
|
||
如果你的集群已经启动并且满足上述要求的话,可以这样部署 AMD 设备插件:
|
||
|
||
```shell
|
||
kubectl create -f https://raw.githubusercontent.com/RadeonOpenCompute/k8s-device-plugin/r1.10/k8s-ds-amdgpu-dp.yaml
|
||
```
|
||
|
||
<!--
|
||
You can report issues with this third-party device plugin by logging an issue in
|
||
[RadeonOpenCompute/k8s-device-plugin](https://github.com/RadeonOpenCompute/k8s-device-plugin).
|
||
-->
|
||
你可以到 [RadeonOpenCompute/k8s-device-plugin](https://github.com/RadeonOpenCompute/k8s-device-plugin)
|
||
项目报告有关此设备插件的问题。
|
||
|
||
<!--
|
||
### Deploying NVIDIA GPU device plugin
|
||
|
||
There are currently two device plugin implementations for NVIDIA GPUs:
|
||
-->
|
||
### 部署 NVIDIA GPU 设备插件 {#deploying-nvidia-gpu-device-plugin}
|
||
|
||
对于 NVIDIA GPUs,目前存在两种设备插件的实现:
|
||
|
||
<!--
|
||
#### Official NVIDIA GPU device plugin
|
||
|
||
The [official NVIDIA GPU device plugin](https://github.com/NVIDIA/k8s-device-plugin)
|
||
has the following requirements:
|
||
-->
|
||
#### 官方的 NVIDIA GPU 设备插件
|
||
|
||
[官方的 NVIDIA GPU 设备插件](https://github.com/NVIDIA/k8s-device-plugin) 有以下要求:
|
||
|
||
<!--
|
||
- Kubernetes nodes have to be pre-installed with NVIDIA drivers.
|
||
- Kubernetes nodes have to be pre-installed with [nvidia-docker 2.0](https://github.com/NVIDIA/nvidia-docker)
|
||
- nvidia-container-runtime must be configured as the [default runtime](https://github.com/NVIDIA/k8s-device-plugin#preparing-your-gpu-nodes)
|
||
for docker instead of runc.
|
||
- NVIDIA drivers ~= 361.93
|
||
|
||
To deploy the NVIDIA device plugin once your cluster is running and the above
|
||
requirements are satisfied:
|
||
-->
|
||
- Kubernetes 的节点必须预先安装了 NVIDIA 驱动
|
||
- Kubernetes 的节点必须预先安装 [nvidia-docker 2.0](https://github.com/NVIDIA/nvidia-docker)
|
||
- Docker 的[默认运行时](https://github.com/NVIDIA/k8s-device-plugin#preparing-your-gpu-nodes)必须设置为 nvidia-container-runtime,而不是 runc
|
||
- NVIDIA 驱动版本 ~= 384.81
|
||
|
||
如果你的集群已经启动并且满足上述要求的话,可以这样部署 NVIDIA 设备插件:
|
||
|
||
```shell
|
||
kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/1.0.0-beta4/nvidia-device-plugin.yml
|
||
```
|
||
请到 [NVIDIA/k8s-device-plugin](https://github.com/NVIDIA/k8s-device-plugin)项目报告有关此设备插件的问题。
|
||
|
||
<!--
|
||
#### NVIDIA GPU device plugin used by GCE
|
||
|
||
The [NVIDIA GPU device plugin used by GCE](https://github.com/GoogleCloudPlatform/container-engine-accelerators/tree/master/cmd/nvidia_gpu)
|
||
doesn't require using nvidia-docker and should work with any container runtime
|
||
that is compatible with the Kubernetes Container Runtime Interface (CRI). It's tested
|
||
on [Container-Optimized OS](https://cloud.google.com/container-optimized-os/)
|
||
and has experimental code for Ubuntu from 1.9 onwards.
|
||
-->
|
||
#### GCE 中使用的 NVIDIA GPU 设备插件
|
||
|
||
[GCE 使用的 NVIDIA GPU 设备插件](https://github.com/GoogleCloudPlatform/container-engine-accelerators/tree/master/cmd/nvidia_gpu) 并不要求使用 nvidia-docker,并且对于任何实现了 Kubernetes CRI 的容器运行时,都应该能够使用。这一实现已经在 [Container-Optimized OS](https://cloud.google.com/container-optimized-os/) 上进行了测试,并且在 1.9 版本之后会有对于 Ubuntu 的实验性代码。
|
||
|
||
你可以使用下面的命令来安装 NVIDIA 驱动以及设备插件:
|
||
|
||
```
|
||
# 在 COntainer-Optimized OS 上安装 NVIDIA 驱动:
|
||
kubectl create -f https://raw.githubusercontent.com/GoogleCloudPlatform/container-engine-accelerators/stable/daemonset.yaml
|
||
|
||
# 在 Ubuntu 上安装 NVIDIA 驱动 (实验性质):
|
||
kubectl create -f https://raw.githubusercontent.com/GoogleCloudPlatform/container-engine-accelerators/stable/nvidia-driver-installer/ubuntu/daemonset.yaml
|
||
|
||
# 安装设备插件:
|
||
kubectl create -f https://raw.githubusercontent.com/kubernetes/kubernetes/release-1.12/cluster/addons/device-plugins/nvidia-gpu/daemonset.yaml
|
||
```
|
||
|
||
<!--
|
||
Report issues with this device plugin and installation method to [GoogleCloudPlatform/container-engine-accelerators](https://github.com/GoogleCloudPlatform/container-engine-accelerators).
|
||
|
||
Google publishes its own [instructions](https://cloud.google.com/kubernetes-engine/docs/how-to/gpus) for using NVIDIA GPUs on GKE .
|
||
-->
|
||
请到 [GoogleCloudPlatform/container-engine-accelerators](https://github.com/GoogleCloudPlatform/container-engine-accelerators) 报告有关此设备插件以及安装方法的问题。
|
||
|
||
关于如何在 GKE 上使用 NVIDIA GPUs,Google 也提供自己的[指令](https://cloud.google.com/kubernetes-engine/docs/how-to/gpus)。
|
||
|
||
<!--
|
||
## Clusters containing different types of GPUs
|
||
|
||
If different nodes in your cluster have different types of GPUs, then you
|
||
can use [Node Labels and Node Selectors](/docs/tasks/configure-pod-container/assign-pods-nodes/)
|
||
to schedule pods to appropriate nodes.
|
||
|
||
For example:
|
||
-->
|
||
## 集群内存在不同类型的 GPU
|
||
|
||
如果集群内部的不同节点上有不同类型的 NVIDIA GPU,那么你可以使用
|
||
[节点标签和节点选择器](/zh/docs/tasks/configure-pod-container/assign-pods-nodes/)
|
||
来将 pod 调度到合适的节点上。
|
||
|
||
例如:
|
||
|
||
```shell
|
||
# 为你的节点加上它们所拥有的加速器类型的标签
|
||
kubectl label nodes <node-with-k80> accelerator=nvidia-tesla-k80
|
||
kubectl label nodes <node-with-p100> accelerator=nvidia-tesla-p100
|
||
```
|
||
|
||
<!--
|
||
## Automatic node labelling {#node-labeller}
|
||
-->
|
||
## 自动节点标签 {#node-labeller}
|
||
|
||
<!--
|
||
If you're using AMD GPU devices, you can deploy
|
||
[Node Labeller](https://github.com/RadeonOpenCompute/k8s-device-plugin/tree/master/cmd/k8s-node-labeller).
|
||
Node Labeller is a {{< glossary_tooltip text="controller" term_id="controller" >}} that automatically
|
||
labels your nodes with GPU properties.
|
||
|
||
At the moment, that controller can add labels for:
|
||
-->
|
||
如果你在使用 AMD GPUs,你可以部署
|
||
[Node Labeller](https://github.com/RadeonOpenCompute/k8s-device-plugin/tree/master/cmd/k8s-node-labeller),
|
||
它是一个 {{< glossary_tooltip text="控制器" term_id="controller" >}},
|
||
会自动给节点打上 GPU 属性标签。目前支持的属性:
|
||
|
||
<!--
|
||
* Device ID (-device-id)
|
||
* VRAM Size (-vram)
|
||
* Number of SIMD (-simd-count)
|
||
* Number of Compute Unit (-cu-count)
|
||
* Firmware and Feature Versions (-firmware)
|
||
* GPU Family, in two letters acronym (-family)
|
||
* SI - Southern Islands
|
||
* CI - Sea Islands
|
||
* KV - Kaveri
|
||
* VI - Volcanic Islands
|
||
* CZ - Carrizo
|
||
* AI - Arctic Islands
|
||
* RV - Raven
|
||
Example result:
|
||
--->
|
||
* 设备 ID (-device-id)
|
||
* VRAM 大小 (-vram)
|
||
* SIMD 数量(-simd-count)
|
||
* 计算单位数量(-cu-count)
|
||
* 固件和特性版本 (-firmware)
|
||
* GPU 系列,两个字母的首字母缩写(-family)
|
||
* SI - Southern Islands
|
||
* CI - Sea Islands
|
||
* KV - Kaveri
|
||
* VI - Volcanic Islands
|
||
* CZ - Carrizo
|
||
* AI - Arctic Islands
|
||
* RV - Raven
|
||
|
||
示例:
|
||
|
||
```shell
|
||
kubectl describe node cluster-node-23
|
||
```
|
||
|
||
```
|
||
Name: cluster-node-23
|
||
Roles: <none>
|
||
Labels: beta.amd.com/gpu.cu-count.64=1
|
||
beta.amd.com/gpu.device-id.6860=1
|
||
beta.amd.com/gpu.family.AI=1
|
||
beta.amd.com/gpu.simd-count.256=1
|
||
beta.amd.com/gpu.vram.16G=1
|
||
beta.kubernetes.io/arch=amd64
|
||
beta.kubernetes.io/os=linux
|
||
kubernetes.io/hostname=cluster-node-23
|
||
Annotations: kubeadm.alpha.kubernetes.io/cri-socket: /var/run/dockershim.sock
|
||
node.alpha.kubernetes.io/ttl: 0
|
||
......
|
||
```
|
||
|
||
<!--
|
||
With the Node Labeller in use, you can specify the GPU type in the Pod spec:
|
||
-->
|
||
使用了 Node Labeller 的时候,你可以在 Pod 的规约中指定 GPU 的类型:
|
||
|
||
```yaml
|
||
apiVersion: v1
|
||
kind: Pod
|
||
metadata:
|
||
name: cuda-vector-add
|
||
spec:
|
||
restartPolicy: OnFailure
|
||
containers:
|
||
- name: cuda-vector-add
|
||
# https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile
|
||
image: "k8s.gcr.io/cuda-vector-add:v0.1"
|
||
resources:
|
||
limits:
|
||
nvidia.com/gpu: 1
|
||
nodeSelector:
|
||
accelerator: nvidia-tesla-p100 # or nvidia-tesla-k80 etc.
|
||
```
|
||
|
||
<!--
|
||
This will ensure that the pod will be scheduled to a node that has the GPU type
|
||
you specified.
|
||
-->
|
||
这能够保证 Pod 能够被调度到你所指定类型的 GPU 的节点上去。
|
||
|