Update 第一章_数学基础.md

This commit is contained in:
AutuanLiu 2018-11-15 21:43:23 +08:00
parent e6e489d9ee
commit bd20036f16
1 changed files with 3 additions and 3 deletions

View File

@ -179,7 +179,7 @@ $$
\lim_{\Delta x \to 0}{\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}}=A
$$
​函数的极限$A$存在。那么称$A$为函数$z=f(x,y)$在点$(x_0,y_0)$处关于自变量$x$的偏导数,记作$f_x(x_0,y_0)$或$\frac{\eth z}{\eth x}\vert_{y=y_0}^{x=x_0}$或$\frac{\eth f}{\eth x}\vert_{y=y_0}^{x=x_0}$或$z_x\vert_{y=y_0}^{x=x_0}$。
​函数的极限$A$存在。那么称$A$为函数$z=f(x,y)$在点$(x_0,y_0)$处关于自变量$x$的偏导数,记作$f_x(x_0,y_0)$或$\frac{\partial z}{\partial x}\vert_{y=y_0}^{x=x_0}$或$\frac{\partial f}{\partial x}\vert_{y=y_0}^{x=x_0}$或$z_x\vert_{y=y_0}^{x=x_0}$。
​偏导数在求解时可以将另外一个变量看做常数,利用普通的求导方式求解,比如$z=3x^2+xy$关于$x$的偏导数就为$z_x=6x+y$,这个时候$y$相当于$x$的系数。
@ -203,13 +203,13 @@ $$
A\nu = \lambda \nu
$$
$\lambda$为特征向量$\vec{v}$对应的特征值。特征值分解是将一个矩阵分解为如下形式:
$\lambda$为特征向量$\vec{v}$对应的特征值。特征值分解是将一个矩阵分解为如下形式:
$$
A=Q\sum Q^{-1}
$$
其中,$Q$是这个矩阵$A$的特征向量组成的矩阵,$\sum$是一个对角矩阵,每一个对角线元素就是一个特征值,里面的特征值是由大到小排列的,这些特征值所对应的特征向量就是描述这个矩阵变化方向(从主要的变化到次要的变化排列)。也就是说矩阵$A$的信息可以由其特征值和特征向量表示。
其中,$Q$是这个矩阵$A$的特征向量组成的矩阵,$\sum$是一个对角矩阵,每一个对角线元素就是一个特征值,里面的特征值是由大到小排列的,这些特征值所对应的特征向量就是描述这个矩阵变化方向(从主要的变化到次要的变化排列)。也就是说矩阵$A$的信息可以由其特征值和特征向量表示。
## 1.9 奇异值与特征值有什么关系?
​那么奇异值和特征值是怎么对应起来的呢?我们将一个矩阵$A$的转置乘以$A$,并对$AA^T$求特征值,则有下面的形式: