406 lines
12 KiB
Markdown
406 lines
12 KiB
Markdown
<p align="center">
|
||
<a href="https://programmercarl.com/other/xunlianying.html" target="_blank">
|
||
<img src="../pics/训练营.png" width="1000"/>
|
||
</a>
|
||
<p align="center"><strong><a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
|
||
|
||
# 72. 编辑距离
|
||
|
||
[力扣题目链接](https://leetcode.cn/problems/edit-distance/)
|
||
|
||
给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
|
||
|
||
你可以对一个单词进行如下三种操作:
|
||
|
||
* 插入一个字符
|
||
* 删除一个字符
|
||
* 替换一个字符
|
||
|
||
* 示例 1:
|
||
* 输入:word1 = "horse", word2 = "ros"
|
||
* 输出:3
|
||
* 解释:
|
||
horse -> rorse (将 'h' 替换为 'r')
|
||
rorse -> rose (删除 'r')
|
||
rose -> ros (删除 'e')
|
||
|
||
|
||
* 示例 2:
|
||
* 输入:word1 = "intention", word2 = "execution"
|
||
* 输出:5
|
||
* 解释:
|
||
intention -> inention (删除 't')
|
||
inention -> enention (将 'i' 替换为 'e')
|
||
enention -> exention (将 'n' 替换为 'x')
|
||
exention -> exection (将 'n' 替换为 'c')
|
||
exection -> execution (插入 'u')
|
||
|
||
提示:
|
||
|
||
* 0 <= word1.length, word2.length <= 500
|
||
* word1 和 word2 由小写英文字母组成
|
||
|
||
|
||
## 思路
|
||
|
||
编辑距离终于来了,这道题目如果大家没有了解动态规划的话,会感觉超级复杂。
|
||
|
||
编辑距离是用动规来解决的经典题目,这道题目看上去好像很复杂,但用动规可以很巧妙的算出最少编辑距离。
|
||
|
||
接下来我依然使用动规五部曲,对本题做一个详细的分析:
|
||
|
||
|
||
### 1. 确定dp数组(dp table)以及下标的含义
|
||
|
||
**dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]**。
|
||
|
||
有同学问了,为啥要表示下标i-1为结尾的字符串呢,为啥不表示下标i为结尾的字符串呢?
|
||
|
||
为什么这么定义我在 [718. 最长重复子数组](https://programmercarl.com/0718.最长重复子数组.html) 中做了详细的讲解。
|
||
|
||
其实用i来表示也可以! 用i-1就是为了方便后面dp数组初始化的。
|
||
|
||
### 2. 确定递推公式
|
||
|
||
在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:
|
||
|
||
```
|
||
if (word1[i - 1] == word2[j - 1])
|
||
不操作
|
||
if (word1[i - 1] != word2[j - 1])
|
||
增
|
||
删
|
||
换
|
||
```
|
||
|
||
也就是如上4种情况。
|
||
|
||
`if (word1[i - 1] == word2[j - 1])` 那么说明不用任何编辑,`dp[i][j]` 就应该是 `dp[i - 1][j - 1]`,即`dp[i][j] = dp[i - 1][j - 1];`
|
||
|
||
此时可能有同学有点不明白,为啥要即`dp[i][j] = dp[i - 1][j - 1]`呢?
|
||
|
||
那么就在回顾上面讲过的`dp[i][j]`的定义,`word1[i - 1]` 与 `word2[j - 1]`相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串`word2`的最近编辑距离`dp[i - 1][j - 1]`就是 `dp[i][j]`了。
|
||
|
||
在下面的讲解中,如果哪里看不懂,就回想一下`dp[i][j]`的定义,就明白了。
|
||
|
||
**在整个动规的过程中,最为关键就是正确理解`dp[i][j]`的定义!**
|
||
|
||
|
||
`if (word1[i - 1] != word2[j - 1])`,此时就需要编辑了,如何编辑呢?
|
||
|
||
* 操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。
|
||
|
||
即 `dp[i][j] = dp[i - 1][j] + 1;`
|
||
|
||
|
||
* 操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。
|
||
|
||
即 `dp[i][j] = dp[i][j - 1] + 1;`
|
||
|
||
这里有同学发现了,怎么都是删除元素,添加元素去哪了。
|
||
|
||
**word2添加一个元素,相当于word1删除一个元素**,例如 `word1 = "ad" ,word2 = "a"`,`word1`删除元素`'d'` 和 `word2`添加一个元素`'d'`,变成`word1="a", word2="ad"`, 最终的操作数是一样! dp数组如下图所示意的:
|
||
|
||
```
|
||
a a d
|
||
+-----+-----+ +-----+-----+-----+
|
||
| 0 | 1 | | 0 | 1 | 2 |
|
||
+-----+-----+ ===> +-----+-----+-----+
|
||
a | 1 | 0 | a | 1 | 0 | 1 |
|
||
+-----+-----+ +-----+-----+-----+
|
||
d | 2 | 1 |
|
||
+-----+-----+
|
||
```
|
||
|
||
操作三:替换元素,`word1`替换`word1[i - 1]`,使其与`word2[j - 1]`相同,此时不用增删加元素。
|
||
|
||
可以回顾一下,`if (word1[i - 1] == word2[j - 1])`的时候我们的操作 是 `dp[i][j] = dp[i - 1][j - 1]` 对吧。
|
||
|
||
那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。
|
||
|
||
所以 `dp[i][j] = dp[i - 1][j - 1] + 1;`
|
||
|
||
综上,当 `if (word1[i - 1] != word2[j - 1])` 时取最小的,即:`dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;`
|
||
|
||
递归公式代码如下:
|
||
|
||
```CPP
|
||
if (word1[i - 1] == word2[j - 1]) {
|
||
dp[i][j] = dp[i - 1][j - 1];
|
||
}
|
||
else {
|
||
dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
|
||
}
|
||
```
|
||
|
||
---
|
||
|
||
### 3. dp数组如何初始化
|
||
|
||
|
||
再回顾一下dp[i][j]的定义:
|
||
|
||
**dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]**。
|
||
|
||
那么dp[i][0] 和 dp[0][j] 表示什么呢?
|
||
|
||
dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。
|
||
|
||
那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;
|
||
|
||
同理dp[0][j] = j;
|
||
|
||
所以C++代码如下:
|
||
|
||
```CPP
|
||
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
|
||
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
|
||
```
|
||
|
||
|
||
### 4. 确定遍历顺序
|
||
|
||
从如下四个递推公式:
|
||
|
||
* `dp[i][j] = dp[i - 1][j - 1]`
|
||
* `dp[i][j] = dp[i - 1][j - 1] + 1`
|
||
* `dp[i][j] = dp[i][j - 1] + 1`
|
||
* `dp[i][j] = dp[i - 1][j] + 1`
|
||
|
||
可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:
|
||
|
||

|
||
|
||
所以在dp矩阵中一定是从左到右从上到下去遍历。
|
||
|
||
代码如下:
|
||
|
||
```CPP
|
||
for (int i = 1; i <= word1.size(); i++) {
|
||
for (int j = 1; j <= word2.size(); j++) {
|
||
if (word1[i - 1] == word2[j - 1]) {
|
||
dp[i][j] = dp[i - 1][j - 1];
|
||
}
|
||
else {
|
||
dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
### 5. 举例推导dp数组
|
||
|
||
|
||
以示例1为例,输入:`word1 = "horse", word2 = "ros"`为例,dp矩阵状态图如下:
|
||
|
||

|
||
|
||
以上动规五部分析完毕,C++代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
int minDistance(string word1, string word2) {
|
||
vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));
|
||
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
|
||
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
|
||
for (int i = 1; i <= word1.size(); i++) {
|
||
for (int j = 1; j <= word2.size(); j++) {
|
||
if (word1[i - 1] == word2[j - 1]) {
|
||
dp[i][j] = dp[i - 1][j - 1];
|
||
}
|
||
else {
|
||
dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
|
||
}
|
||
}
|
||
}
|
||
return dp[word1.size()][word2.size()];
|
||
}
|
||
};
|
||
```
|
||
* 时间复杂度: O(n * m)
|
||
* 空间复杂度: O(n * m)
|
||
|
||
|
||
|
||
## 其他语言版本
|
||
|
||
|
||
Java:
|
||
```java
|
||
public int minDistance(String word1, String word2) {
|
||
int m = word1.length();
|
||
int n = word2.length();
|
||
int[][] dp = new int[m + 1][n + 1];
|
||
// 初始化
|
||
for (int i = 1; i <= m; i++) {
|
||
dp[i][0] = i;
|
||
}
|
||
for (int j = 1; j <= n; j++) {
|
||
dp[0][j] = j;
|
||
}
|
||
for (int i = 1; i <= m; i++) {
|
||
for (int j = 1; j <= n; j++) {
|
||
// 因为dp数组有效位从1开始
|
||
// 所以当前遍历到的字符串的位置为i-1 | j-1
|
||
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
|
||
dp[i][j] = dp[i - 1][j - 1];
|
||
} else {
|
||
dp[i][j] = Math.min(Math.min(dp[i - 1][j - 1], dp[i][j - 1]), dp[i - 1][j]) + 1;
|
||
}
|
||
}
|
||
}
|
||
return dp[m][n];
|
||
}
|
||
```
|
||
|
||
Python:
|
||
```python
|
||
class Solution:
|
||
def minDistance(self, word1: str, word2: str) -> int:
|
||
dp = [[0] * (len(word2)+1) for _ in range(len(word1)+1)]
|
||
for i in range(len(word1)+1):
|
||
dp[i][0] = i
|
||
for j in range(len(word2)+1):
|
||
dp[0][j] = j
|
||
for i in range(1, len(word1)+1):
|
||
for j in range(1, len(word2)+1):
|
||
if word1[i-1] == word2[j-1]:
|
||
dp[i][j] = dp[i-1][j-1]
|
||
else:
|
||
dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1
|
||
return dp[-1][-1]
|
||
```
|
||
|
||
Go:
|
||
```Go
|
||
func minDistance(word1 string, word2 string) int {
|
||
m, n := len(word1), len(word2)
|
||
dp := make([][]int, m+1)
|
||
for i := range dp {
|
||
dp[i] = make([]int, n+1)
|
||
}
|
||
for i := 0; i < m+1; i++ {
|
||
dp[i][0] = i // word1[i] 变成 word2[0], 删掉 word1[i], 需要 i 部操作
|
||
}
|
||
for j := 0; j < n+1; j++ {
|
||
dp[0][j] = j // word1[0] 变成 word2[j], 插入 word1[j],需要 j 部操作
|
||
}
|
||
for i := 1; i < m+1; i++ {
|
||
for j := 1; j < n+1; j++ {
|
||
if word1[i-1] == word2[j-1] {
|
||
dp[i][j] = dp[i-1][j-1]
|
||
} else { // Min(插入,删除,替换)
|
||
dp[i][j] = Min(dp[i][j-1], dp[i-1][j], dp[i-1][j-1]) + 1
|
||
}
|
||
}
|
||
}
|
||
return dp[m][n]
|
||
}
|
||
func Min(args ...int) int {
|
||
min := args[0]
|
||
for _, item := range args {
|
||
if item < min {
|
||
min = item
|
||
}
|
||
}
|
||
return min
|
||
}
|
||
```
|
||
|
||
|
||
Javascript:
|
||
```javascript
|
||
const minDistance = (word1, word2) => {
|
||
let dp = Array.from(Array(word1.length + 1), () => Array(word2.length+1).fill(0));
|
||
|
||
for(let i = 1; i <= word1.length; i++) {
|
||
dp[i][0] = i;
|
||
}
|
||
|
||
for(let j = 1; j <= word2.length; j++) {
|
||
dp[0][j] = j;
|
||
}
|
||
|
||
for(let i = 1; i <= word1.length; i++) {
|
||
for(let j = 1; j <= word2.length; j++) {
|
||
if(word1[i-1] === word2[j-1]) {
|
||
dp[i][j] = dp[i-1][j-1];
|
||
} else {
|
||
dp[i][j] = Math.min(dp[i-1][j] + 1, dp[i][j-1] + 1, dp[i-1][j-1] + 1);
|
||
}
|
||
}
|
||
}
|
||
|
||
return dp[word1.length][word2.length];
|
||
};
|
||
```
|
||
|
||
TypeScript:
|
||
|
||
```typescript
|
||
function minDistance(word1: string, word2: string): number {
|
||
/**
|
||
dp[i][j]: word1前i个字符,word2前j个字符,最少操作数
|
||
dp[0][0]=0:表示word1前0个字符为'', word2前0个字符为''
|
||
*/
|
||
const length1: number = word1.length,
|
||
length2: number = word2.length;
|
||
const dp: number[][] = new Array(length1 + 1).fill(0)
|
||
.map(_ => new Array(length2 + 1).fill(0));
|
||
for (let i = 0; i <= length1; i++) {
|
||
dp[i][0] = i;
|
||
}
|
||
for (let i = 0; i <= length2; i++) {
|
||
dp[0][i] = i;
|
||
}
|
||
for (let i = 1; i <= length1; i++) {
|
||
for (let j = 1; j <= length2; j++) {
|
||
if (word1[i - 1] === word2[j - 1]) {
|
||
dp[i][j] = dp[i - 1][j - 1];
|
||
} else {
|
||
dp[i][j] = Math.min(
|
||
dp[i - 1][j],
|
||
dp[i][j - 1],
|
||
dp[i - 1][j - 1]
|
||
) + 1;
|
||
}
|
||
}
|
||
}
|
||
return dp[length1][length2];
|
||
};
|
||
```
|
||
|
||
C:
|
||
|
||
|
||
```c
|
||
int min(int num1, int num2, int num3) {
|
||
return num1 > num2 ? (num2 > num3 ? num3 : num2) : (num1 > num3 ? num3 : num1);
|
||
}
|
||
|
||
int minDistance(char * word1, char * word2){
|
||
int dp[strlen(word1)+1][strlen(word2)+1];
|
||
dp[0][0] = 0;
|
||
for (int i = 1; i <= strlen(word1); i++) dp[i][0] = i;
|
||
for (int i = 1; i <= strlen(word2); i++) dp[0][i] = i;
|
||
|
||
for (int i = 1; i <= strlen(word1); i++) {
|
||
for (int j = 1; j <= strlen(word2); j++) {
|
||
if (word1[i-1] == word2[j-1]) {
|
||
dp[i][j] = dp[i-1][j-1];
|
||
}
|
||
else {
|
||
dp[i][j] = min(dp[i-1][j-1], dp[i][j-1], dp[i-1][j]) + 1;
|
||
}
|
||
}
|
||
}
|
||
return dp[strlen(word1)][strlen(word2)];
|
||
}
|
||
```
|
||
|
||
<p align="center">
|
||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
|
||
</a>
|