leetcode-master/problems/0077.组合优化.md

231 lines
7.4 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<p align="center">
<a href="https://mp.weixin.qq.com/s/RsdcQ9umo09R6cfnwXZlrQ"><img src="https://img.shields.io/badge/PDF下载-代码随想录-blueviolet" alt=""></a>
<a href="https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw"><img src="https://img.shields.io/badge/刷题-微信群-green" alt=""></a>
<a href="https://space.bilibili.com/525438321"><img src="https://img.shields.io/badge/B站-代码随想录-orange" alt=""></a>
<a href="https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ"><img src="https://img.shields.io/badge/知识星球-代码随想录-blue" alt=""></a>
</p>
<p align="center"><strong>欢迎大家<a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
在[回溯算法:求组合问题!](https://mp.weixin.qq.com/s/OnBjbLzuipWz_u4QfmgcqQ)中我们通过回溯搜索法解决了n个数中求k个数的组合问题。
> 可以直接看我的B栈视频讲解[带你学透回溯算法-组合问题的剪枝操作](https://www.bilibili.com/video/BV1wi4y157er)
文中的回溯法是可以剪枝优化的本篇我们继续来看一下题目77. 组合。
链接https://leetcode-cn.com/problems/combinations/
**看本篇之前,需要先看[回溯算法:求组合问题!](https://mp.weixin.qq.com/s/OnBjbLzuipWz_u4QfmgcqQ)**
大家先回忆一下[77. 组合]给出的回溯法的代码:
```
class Solution {
private:
vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件结果
void backtracking(int n, int k, int startIndex) {
if (path.size() == k) {
result.push_back(path);
return;
}
for (int i = startIndex; i <= n; i++) {
path.push_back(i); // 处理节点
backtracking(n, k, i + 1); // 递归
path.pop_back(); // 回溯,撤销处理的节点
}
}
public:
vector<vector<int>> combine(int n, int k) {
result.clear(); // 可以不写
path.clear(); // 可以不写
backtracking(n, k, 1);
return result;
}
};
```
# 剪枝优化
我们说过,回溯法虽然是暴力搜索,但也有时候可以有点剪枝优化一下的。
在遍历的过程中有如下代码:
```
for (int i = startIndex; i <= n; i++) {
path.push_back(i);
backtracking(n, k, i + 1);
path.pop_back();
}
```
这个遍历的范围是可以剪枝优化的,怎么优化呢?
来举一个例子n = 4k = 4的话那么第一层for循环的时候从元素2开始的遍历都没有意义了。 在第二层for循环从元素3开始的遍历都没有意义了。
这么说有点抽象,如图所示:
![77.组合4](https://img-blog.csdnimg.cn/20210130194335207.png)
图中每一个节点图中为矩形就代表本层的一个for循环那么每一层的for循环从第二个数开始遍历的话都没有意义都是无效遍历。
**所以可以剪枝的地方就在递归中每一层的for循环所选择的起始位置**
**如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了**
注意代码中i就是for循环里选择的起始位置。
```
for (int i = startIndex; i <= n; i++) {
```
接下来看一下优化过程如下:
1. 已经选择的元素个数path.size();
2. 还需要的元素个数为: k - path.size();
3. 在集合n中至多要从该起始位置 : n - (k - path.size()) + 1开始遍历
为什么有个+1呢因为包括起始位置我们要是一个左闭的集合。
举个例子n = 4k = 3 目前已经选取的元素为0path.size为0n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。
从2开始搜索都是合理的可以是组合[2, 3, 4]。
这里大家想不懂的话,建议也举一个例子,就知道是不是要+1了。
所以优化之后的for循环是
```
for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) // i为本次搜索的起始位置
```
优化后整体代码如下:
```
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(int n, int k, int startIndex) {
if (path.size() == k) {
result.push_back(path);
return;
}
for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) { // 优化的地方
path.push_back(i); // 处理节点
backtracking(n, k, i + 1);
path.pop_back(); // 回溯,撤销处理的节点
}
}
public:
vector<vector<int>> combine(int n, int k) {
backtracking(n, k, 1);
return result;
}
};
```
# 总结
本篇我们准对求组合问题的回溯法代码做了剪枝优化,这个优化如果不画图的话,其实不好理解,也不好讲清楚。
所以我依然是把整个回溯过程抽象为一颗树形结构,然后可以直观的看出,剪枝究竟是剪的哪里。
**就酱学到了就帮Carl转发一下吧让更多的同学知道这里**
## 其他语言版本
Java
```
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> combine(int n, int k) {
combineHelper(n, k, 1);
return result;
}
/**
* 每次从集合中选取元素可选择的范围随着选择的进行而收缩调整可选择的范围就是要靠startIndex
* @param startIndex 用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。
*/
private void combineHelper(int n, int k, int startIndex){
//终止条件
if (path.size() == k){
result.add(new ArrayList<>(path));
return;
}
for (int i = startIndex; i <= n - (k - path.size()) + 1; i++){
path.add(i);
combineHelper(n, k, i + 1);
path.removeLast();
}
}
}
```
Python
```python3
class Solution:
def combine(self, n: int, k: int) -> List[List[int]]:
res=[] #存放符合条件结果的集合
path=[] #用来存放符合条件结果
def backtrack(n,k,startIndex):
if len(path) == k:
res.append(path[:])
return
for i in range(startIndex,n-(k-len(path))+2): #优化的地方
path.append(i) #处理节点
backtrack(n,k,i+1) #递归
path.pop() #回溯,撤销处理的节点
backtrack(n,k,1)
return res
```
Go
```Go
var res [][]int
func combine(n int, k int) [][]int {
res=[][]int{}
if n <= 0 || k <= 0 || k > n {
return res
}
backtrack(n, k, 1, []int{})
return res
}
func backtrack(n,k,start int,track []int){
if len(track)==k{
temp:=make([]int,k)
copy(temp,track)
res=append(res,temp)
}
if len(track)+n-start+1 < k {
return
}
for i:=start;i<=n;i++{
track=append(track,i)
backtrack(n,k,i+1,track)
track=track[:len(track)-1]
}
}
```
-----------------------
* 作者微信:[程序员Carl](https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw)
* B站视频[代码随想录](https://space.bilibili.com/525438321)
* 知识星球:[代码随想录](https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ)
<div align="center"><img src=../pics/公众号.png width=450 alt=> </img></div>