528 lines
15 KiB
Markdown
528 lines
15 KiB
Markdown
<p align="center">
|
||
<a href="https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ" target="_blank">
|
||
<img src="https://code-thinking-1253855093.file.myqcloud.com/pics/20210924105952.png" width="1000"/>
|
||
</a>
|
||
<p align="center"><strong><a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
|
||
|
||
|
||
# 98.验证二叉搜索树
|
||
|
||
[力扣题目链接](https://leetcode-cn.com/problems/validate-binary-search-tree/)
|
||
|
||
|
||
给定一个二叉树,判断其是否是一个有效的二叉搜索树。
|
||
|
||
假设一个二叉搜索树具有如下特征:
|
||
|
||
* 节点的左子树只包含小于当前节点的数。
|
||
* 节点的右子树只包含大于当前节点的数。
|
||
* 所有左子树和右子树自身必须也是二叉搜索树。
|
||
|
||

|
||
|
||
# 思路
|
||
|
||
要知道中序遍历下,输出的二叉搜索树节点的数值是有序序列。
|
||
|
||
有了这个特性,**验证二叉搜索树,就相当于变成了判断一个序列是不是递增的了。**
|
||
|
||
## 递归法
|
||
|
||
可以递归中序遍历将二叉搜索树转变成一个数组,代码如下:
|
||
|
||
```CPP
|
||
vector<int> vec;
|
||
void traversal(TreeNode* root) {
|
||
if (root == NULL) return;
|
||
traversal(root->left);
|
||
vec.push_back(root->val); // 将二叉搜索树转换为有序数组
|
||
traversal(root->right);
|
||
}
|
||
```
|
||
|
||
然后只要比较一下,这个数组是否是有序的,**注意二叉搜索树中不能有重复元素**。
|
||
|
||
```CPP
|
||
traversal(root);
|
||
for (int i = 1; i < vec.size(); i++) {
|
||
// 注意要小于等于,搜索树里不能有相同元素
|
||
if (vec[i] <= vec[i - 1]) return false;
|
||
}
|
||
return true;
|
||
```
|
||
|
||
整体代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
private:
|
||
vector<int> vec;
|
||
void traversal(TreeNode* root) {
|
||
if (root == NULL) return;
|
||
traversal(root->left);
|
||
vec.push_back(root->val); // 将二叉搜索树转换为有序数组
|
||
traversal(root->right);
|
||
}
|
||
public:
|
||
bool isValidBST(TreeNode* root) {
|
||
vec.clear(); // 不加这句在leetcode上也可以过,但最好加上
|
||
traversal(root);
|
||
for (int i = 1; i < vec.size(); i++) {
|
||
// 注意要小于等于,搜索树里不能有相同元素
|
||
if (vec[i] <= vec[i - 1]) return false;
|
||
}
|
||
return true;
|
||
}
|
||
};
|
||
```
|
||
|
||
以上代码中,我们把二叉树转变为数组来判断,是最直观的,但其实不用转变成数组,可以在递归遍历的过程中直接判断是否有序。
|
||
|
||
|
||
这道题目比较容易陷入两个陷阱:
|
||
|
||
* 陷阱1
|
||
|
||
**不能单纯的比较左节点小于中间节点,右节点大于中间节点就完事了**。
|
||
|
||
写出了类似这样的代码:
|
||
|
||
```
|
||
if (root->val > root->left->val && root->val < root->right->val) {
|
||
return true;
|
||
} else {
|
||
return false;
|
||
}
|
||
```
|
||
|
||
**我们要比较的是 左子树所有节点小于中间节点,右子树所有节点大于中间节点。**所以以上代码的判断逻辑是错误的。
|
||
|
||
例如: [10,5,15,null,null,6,20] 这个case:
|
||
|
||

|
||
|
||
节点10大于左节点5,小于右节点15,但右子树里出现了一个6 这就不符合了!
|
||
|
||
* 陷阱2
|
||
|
||
样例中最小节点 可能是int的最小值,如果这样使用最小的int来比较也是不行的。
|
||
|
||
此时可以初始化比较元素为longlong的最小值。
|
||
|
||
问题可以进一步演进:如果样例中根节点的val 可能是longlong的最小值 又要怎么办呢?文中会解答。
|
||
|
||
了解这些陷阱之后我们来看一下代码应该怎么写:
|
||
|
||
递归三部曲:
|
||
|
||
* 确定递归函数,返回值以及参数
|
||
|
||
要定义一个longlong的全局变量,用来比较遍历的节点是否有序,因为后台测试数据中有int最小值,所以定义为longlong的类型,初始化为longlong最小值。
|
||
|
||
注意递归函数要有bool类型的返回值, 我们在[二叉树:递归函数究竟什么时候需要返回值,什么时候不要返回值?](https://programmercarl.com/0112.路径总和.html) 中讲了,只有寻找某一条边(或者一个节点)的时候,递归函数会有bool类型的返回值。
|
||
|
||
其实本题是同样的道理,我们在寻找一个不符合条件的节点,如果没有找到这个节点就遍历了整个树,如果找到不符合的节点了,立刻返回。
|
||
|
||
代码如下:
|
||
|
||
```
|
||
long long maxVal = LONG_MIN; // 因为后台测试数据中有int最小值
|
||
bool isValidBST(TreeNode* root)
|
||
```
|
||
|
||
* 确定终止条件
|
||
|
||
如果是空节点 是不是二叉搜索树呢?
|
||
|
||
是的,二叉搜索树也可以为空!
|
||
|
||
代码如下:
|
||
|
||
```
|
||
if (root == NULL) return true;
|
||
```
|
||
|
||
* 确定单层递归的逻辑
|
||
|
||
中序遍历,一直更新maxVal,一旦发现maxVal >= root->val,就返回false,注意元素相同时候也要返回false。
|
||
|
||
代码如下:
|
||
|
||
```
|
||
bool left = isValidBST(root->left); // 左
|
||
|
||
// 中序遍历,验证遍历的元素是不是从小到大
|
||
if (maxVal < root->val) maxVal = root->val; // 中
|
||
else return false;
|
||
|
||
bool right = isValidBST(root->right); // 右
|
||
return left && right;
|
||
```
|
||
|
||
整体代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
long long maxVal = LONG_MIN; // 因为后台测试数据中有int最小值
|
||
bool isValidBST(TreeNode* root) {
|
||
if (root == NULL) return true;
|
||
|
||
bool left = isValidBST(root->left);
|
||
// 中序遍历,验证遍历的元素是不是从小到大
|
||
if (maxVal < root->val) maxVal = root->val;
|
||
else return false;
|
||
bool right = isValidBST(root->right);
|
||
|
||
return left && right;
|
||
}
|
||
};
|
||
```
|
||
|
||
以上代码是因为后台数据有int最小值测试用例,所以都把maxVal改成了longlong最小值。
|
||
|
||
如果测试数据中有 longlong的最小值,怎么办?
|
||
|
||
不可能在初始化一个更小的值了吧。 建议避免 初始化最小值,如下方法取到最左面节点的数值来比较。
|
||
|
||
代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
TreeNode* pre = NULL; // 用来记录前一个节点
|
||
bool isValidBST(TreeNode* root) {
|
||
if (root == NULL) return true;
|
||
bool left = isValidBST(root->left);
|
||
|
||
if (pre != NULL && pre->val >= root->val) return false;
|
||
pre = root; // 记录前一个节点
|
||
|
||
bool right = isValidBST(root->right);
|
||
return left && right;
|
||
}
|
||
};
|
||
```
|
||
|
||
最后这份代码看上去整洁一些,思路也清晰。
|
||
|
||
## 迭代法
|
||
|
||
可以用迭代法模拟二叉树中序遍历,对前中后序迭代法生疏的同学可以看这两篇[二叉树:听说递归能做的,栈也能做!](https://programmercarl.com/二叉树的迭代遍历.html),[二叉树:前中后序迭代方式统一写法](https://programmercarl.com/二叉树的统一迭代法.html)
|
||
|
||
迭代法中序遍历稍加改动就可以了,代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
bool isValidBST(TreeNode* root) {
|
||
stack<TreeNode*> st;
|
||
TreeNode* cur = root;
|
||
TreeNode* pre = NULL; // 记录前一个节点
|
||
while (cur != NULL || !st.empty()) {
|
||
if (cur != NULL) {
|
||
st.push(cur);
|
||
cur = cur->left; // 左
|
||
} else {
|
||
cur = st.top(); // 中
|
||
st.pop();
|
||
if (pre != NULL && cur->val <= pre->val)
|
||
return false;
|
||
pre = cur; //保存前一个访问的结点
|
||
|
||
cur = cur->right; // 右
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
};
|
||
```
|
||
|
||
在[二叉树:二叉搜索树登场!](https://programmercarl.com/0700.二叉搜索树中的搜索.html)中我们分明写出了痛哭流涕的简洁迭代法,怎么在这里不行了呢,因为本题是要验证二叉搜索树啊。
|
||
|
||
# 总结
|
||
|
||
这道题目是一个简单题,但对于没接触过的同学还是有难度的。
|
||
|
||
所以初学者刚开始学习算法的时候,看到简单题目没有思路很正常,千万别怀疑自己智商,学习过程都是这样的,大家智商都差不多,哈哈。
|
||
|
||
只要把基本类型的题目都做过,总结过之后,思路自然就开阔了。
|
||
|
||
|
||
# 其他语言版本
|
||
|
||
|
||
## Java
|
||
|
||
```Java
|
||
class Solution {
|
||
// 递归
|
||
TreeNode max;
|
||
public boolean isValidBST(TreeNode root) {
|
||
if (root == null) {
|
||
return true;
|
||
}
|
||
// 左
|
||
boolean left = isValidBST(root.left);
|
||
if (!left) {
|
||
return false;
|
||
}
|
||
// 中
|
||
if (max != null && root.val <= max.val) {
|
||
return false;
|
||
}
|
||
max = root;
|
||
// 右
|
||
boolean right = isValidBST(root.right);
|
||
return right;
|
||
}
|
||
}
|
||
|
||
class Solution {
|
||
// 迭代
|
||
public boolean isValidBST(TreeNode root) {
|
||
if (root == null) {
|
||
return true;
|
||
}
|
||
Stack<TreeNode> stack = new Stack<>();
|
||
TreeNode pre = null;
|
||
while (root != null || !stack.isEmpty()) {
|
||
while (root != null) {
|
||
stack.push(root);
|
||
root = root.left;// 左
|
||
}
|
||
// 中,处理
|
||
TreeNode pop = stack.pop();
|
||
if (pre != null && pop.val <= pre.val) {
|
||
return false;
|
||
}
|
||
pre = pop;
|
||
|
||
root = pop.right;// 右
|
||
}
|
||
return true;
|
||
}
|
||
}
|
||
|
||
// 简洁实现·递归解法
|
||
class Solution {
|
||
public boolean isValidBST(TreeNode root) {
|
||
return validBST(Long.MIN_VALUE, Long.MAX_VALUE, root);
|
||
}
|
||
boolean validBST(long lower, long upper, TreeNode root) {
|
||
if (root == null) return true;
|
||
if (root.val <= lower || root.val >= upper) return false;
|
||
return validBST(lower, root.val, root.left) && validBST(root.val, upper, root.right);
|
||
}
|
||
}
|
||
// 简洁实现·中序遍历
|
||
class Solution {
|
||
private long prev = Long.MIN_VALUE;
|
||
public boolean isValidBST(TreeNode root) {
|
||
if (root == null) {
|
||
return true;
|
||
}
|
||
if (!isValidBST(root.left)) {
|
||
return false;
|
||
}
|
||
if (root.val <= prev) { // 不满足二叉搜索树条件
|
||
return false;
|
||
}
|
||
prev = root.val;
|
||
return isValidBST(root.right);
|
||
}
|
||
}
|
||
```
|
||
|
||
## Python
|
||
|
||
**递归** - 利用BST中序遍历特性,把树"压缩"成数组
|
||
```python
|
||
class Solution:
|
||
def isValidBST(self, root: TreeNode) -> bool:
|
||
# 思路: 利用BST中序遍历的特性.
|
||
# 中序遍历输出的二叉搜索树节点的数值是有序序列
|
||
candidate_list = []
|
||
|
||
def __traverse(root: TreeNode) -> None:
|
||
nonlocal candidate_list
|
||
if not root:
|
||
return
|
||
__traverse(root.left)
|
||
candidate_list.append(root.val)
|
||
__traverse(root.right)
|
||
|
||
def __is_sorted(nums: list) -> bool:
|
||
for i in range(1, len(nums)):
|
||
if nums[i] <= nums[i - 1]: # ⚠️ 注意: Leetcode定义二叉搜索树中不能有重复元素
|
||
return False
|
||
return True
|
||
|
||
__traverse(root)
|
||
res = __is_sorted(candidate_list)
|
||
|
||
return res
|
||
```
|
||
|
||
**递归** - 标准做法
|
||
|
||
```python
|
||
class Solution:
|
||
def isValidBST(self, root: TreeNode) -> bool:
|
||
# 规律: BST的中序遍历节点数值是从小到大.
|
||
cur_max = -float("INF")
|
||
def __isValidBST(root: TreeNode) -> bool:
|
||
nonlocal cur_max
|
||
|
||
if not root:
|
||
return True
|
||
|
||
is_left_valid = __isValidBST(root.left)
|
||
if cur_max < root.val:
|
||
cur_max = root.val
|
||
else:
|
||
return False
|
||
is_right_valid = __isValidBST(root.right)
|
||
|
||
return is_left_valid and is_right_valid
|
||
return __isValidBST(root)
|
||
```
|
||
|
||
```python
|
||
迭代-中序遍历
|
||
class Solution:
|
||
def isValidBST(self, root: TreeNode) -> bool:
|
||
stack = []
|
||
cur = root
|
||
pre = None
|
||
while cur or stack:
|
||
if cur: # 指针来访问节点,访问到最底层
|
||
stack.append(cur)
|
||
cur = cur.left
|
||
else: # 逐一处理节点
|
||
cur = stack.pop()
|
||
if pre and cur.val <= pre.val: # 比较当前节点和前节点的值的大小
|
||
return False
|
||
pre = cur
|
||
cur = cur.right
|
||
return True
|
||
|
||
```
|
||
## Go
|
||
|
||
```Go
|
||
import "math"
|
||
|
||
func isValidBST(root *TreeNode) bool {
|
||
if root == nil {
|
||
return true
|
||
}
|
||
return isBST(root, math.MinInt64, math.MaxFloat64)
|
||
}
|
||
func isBST(root *TreeNode, min, max int) bool {
|
||
if root == nil {
|
||
return true
|
||
}
|
||
if min >= root.Val || max <= root.Val {
|
||
return false
|
||
}
|
||
return isBST(root.Left, min, root.Val) && isBST(root.Right, root.Val, max)
|
||
}
|
||
```
|
||
```go
|
||
// 中序遍历解法
|
||
func isValidBST(root *TreeNode) bool {
|
||
// 保存上一个指针
|
||
var prev *TreeNode
|
||
var travel func(node *TreeNode) bool
|
||
travel = func(node *TreeNode) bool {
|
||
if node == nil {
|
||
return true
|
||
}
|
||
leftRes := travel(node.Left)
|
||
// 当前值小于等于前一个节点的值,返回false
|
||
if prev != nil && node.Val <= prev.Val {
|
||
return false
|
||
}
|
||
prev = node
|
||
rightRes := travel(node.Right)
|
||
return leftRes && rightRes
|
||
}
|
||
return travel(root)
|
||
}
|
||
```
|
||
|
||
## JavaScript
|
||
|
||
辅助数组解决
|
||
|
||
```javascript
|
||
/**
|
||
* Definition for a binary tree node.
|
||
* function TreeNode(val, left, right) {
|
||
* this.val = (val===undefined ? 0 : val)
|
||
* this.left = (left===undefined ? null : left)
|
||
* this.right = (right===undefined ? null : right)
|
||
* }
|
||
*/
|
||
/**
|
||
* @param {TreeNode} root
|
||
* @return {boolean}
|
||
*/
|
||
var isValidBST = function (root) {
|
||
let arr = [];
|
||
const buildArr = (root) => {
|
||
if (root) {
|
||
buildArr(root.left);
|
||
arr.push(root.val);
|
||
buildArr(root.right);
|
||
}
|
||
}
|
||
buildArr(root);
|
||
for (let i = 1; i < arr.length; ++i) {
|
||
if (arr[i] <= arr[i - 1])
|
||
return false;
|
||
}
|
||
return true;
|
||
};
|
||
```
|
||
|
||
递归中解决
|
||
|
||
```javascript
|
||
/**
|
||
* Definition for a binary tree node.
|
||
* function TreeNode(val, left, right) {
|
||
* this.val = (val===undefined ? 0 : val)
|
||
* this.left = (left===undefined ? null : left)
|
||
* this.right = (right===undefined ? null : right)
|
||
* }
|
||
*/
|
||
/**
|
||
* @param {TreeNode} root
|
||
* @return {boolean}
|
||
*/
|
||
let pre = null;
|
||
var isValidBST = function (root) {
|
||
let pre = null;
|
||
const inOrder = (root) => {
|
||
if (root === null)
|
||
return true;
|
||
let left = inOrder(root.left);
|
||
|
||
if (pre !== null && pre.val >= root.val)
|
||
return false;
|
||
pre = root;
|
||
|
||
let right = inOrder(root.right);
|
||
return left && right;
|
||
}
|
||
return inOrder(root);
|
||
};
|
||
```
|
||
|
||
|
||
|
||
-----------------------
|
||
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>
|