444 lines
10 KiB
Markdown
444 lines
10 KiB
Markdown
<p align="center">
|
||
<a href="https://programmercarl.com/other/xunlianying.html" target="_blank">
|
||
<img src="../pics/训练营.png" width="1000"/>
|
||
</a>
|
||
<p align="center"><strong><a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
|
||
|
||
# 509. 斐波那契数
|
||
|
||
[力扣题目链接](https://leetcode.cn/problems/fibonacci-number/)
|
||
|
||
斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
|
||
F(0) = 0,F(1) = 1
|
||
F(n) = F(n - 1) + F(n - 2),其中 n > 1
|
||
给你n ,请计算 F(n) 。
|
||
|
||
示例 1:
|
||
* 输入:2
|
||
* 输出:1
|
||
* 解释:F(2) = F(1) + F(0) = 1 + 0 = 1
|
||
|
||
示例 2:
|
||
* 输入:3
|
||
* 输出:2
|
||
* 解释:F(3) = F(2) + F(1) = 1 + 1 = 2
|
||
|
||
示例 3:
|
||
* 输入:4
|
||
* 输出:3
|
||
* 解释:F(4) = F(3) + F(2) = 2 + 1 = 3
|
||
|
||
提示:
|
||
|
||
* 0 <= n <= 30
|
||
|
||
# 视频讲解
|
||
|
||
**《代码随想录》算法视频公开课:[手把手带你入门动态规划 | leetcode:509.斐波那契数](https://www.bilibili.com/video/BV1f5411K7mo),相信结合视频在看本篇题解,更有助于大家对本题的理解**。
|
||
|
||
## 思路
|
||
|
||
斐波那契数列大家应该非常熟悉不过了,非常适合作为动规第一道题目来练练手。
|
||
|
||
因为这道题目比较简单,可能一些同学并不需要做什么分析,直接顺手一写就过了。
|
||
|
||
**但「代码随想录」的风格是:简单题目是用来加深对解题方法论的理解的**。
|
||
|
||
通过这道题目让大家可以初步认识到,按照动规五部曲是如何解题的。
|
||
|
||
对于动规,如果没有方法论的话,可能简单题目可以顺手一写就过,难一点就不知道如何下手了。
|
||
|
||
所以我总结的动规五部曲,是要用来贯穿整个动态规划系列的,就像之前讲过[二叉树系列的递归三部曲](https://www.programmercarl.com/二叉树的递归遍历.html),[回溯法系列的回溯三部曲](https://programmercarl.com/回溯算法理论基础.html)一样。后面慢慢大家就会体会到,动规五部曲方法的重要性。
|
||
|
||
### 动态规划
|
||
|
||
动规五部曲:
|
||
|
||
这里我们要用一个一维dp数组来保存递归的结果
|
||
|
||
1. 确定dp数组以及下标的含义
|
||
|
||
dp[i]的定义为:第i个数的斐波那契数值是dp[i]
|
||
|
||
2. 确定递推公式
|
||
|
||
为什么这是一道非常简单的入门题目呢?
|
||
|
||
**因为题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];**
|
||
|
||
3. dp数组如何初始化
|
||
|
||
**题目中把如何初始化也直接给我们了,如下:**
|
||
|
||
```
|
||
dp[0] = 0;
|
||
dp[1] = 1;
|
||
```
|
||
|
||
4. 确定遍历顺序
|
||
|
||
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
|
||
|
||
5. 举例推导dp数组
|
||
|
||
按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:
|
||
|
||
0 1 1 2 3 5 8 13 21 34 55
|
||
|
||
如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。
|
||
|
||
以上我们用动规的方法分析完了,C++代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
int fib(int N) {
|
||
if (N <= 1) return N;
|
||
vector<int> dp(N + 1);
|
||
dp[0] = 0;
|
||
dp[1] = 1;
|
||
for (int i = 2; i <= N; i++) {
|
||
dp[i] = dp[i - 1] + dp[i - 2];
|
||
}
|
||
return dp[N];
|
||
}
|
||
};
|
||
```
|
||
* 时间复杂度:O(n)
|
||
* 空间复杂度:O(n)
|
||
|
||
当然可以发现,我们只需要维护两个数值就可以了,不需要记录整个序列。
|
||
|
||
代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
int fib(int N) {
|
||
if (N <= 1) return N;
|
||
int dp[2];
|
||
dp[0] = 0;
|
||
dp[1] = 1;
|
||
for (int i = 2; i <= N; i++) {
|
||
int sum = dp[0] + dp[1];
|
||
dp[0] = dp[1];
|
||
dp[1] = sum;
|
||
}
|
||
return dp[1];
|
||
}
|
||
};
|
||
```
|
||
|
||
* 时间复杂度:O(n)
|
||
* 空间复杂度:O(1)
|
||
|
||
### 递归解法
|
||
|
||
本题还可以使用递归解法来做
|
||
|
||
代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
int fib(int N) {
|
||
if (N < 2) return N;
|
||
return fib(N - 1) + fib(N - 2);
|
||
}
|
||
};
|
||
```
|
||
|
||
* 时间复杂度:O(2^n)
|
||
* 空间复杂度:O(n),算上了编程语言中实现递归的系统栈所占空间
|
||
|
||
这个递归的时间复杂度大家画一下树形图就知道了,如果不清晰的同学,可以看这篇:[通过一道面试题目,讲一讲递归算法的时间复杂度!](https://programmercarl.com/前序/通过一道面试题目,讲一讲递归算法的时间复杂度!.html)
|
||
|
||
|
||
## 总结
|
||
|
||
斐波那契数列这道题目是非常基础的题目,我在后面的动态规划的讲解中将会多次提到斐波那契数列!
|
||
|
||
这里我严格按照[关于动态规划,你该了解这些!](https://programmercarl.com/动态规划理论基础.html)中的动规五部曲来分析了这道题目,一些分析步骤可能同学感觉没有必要搞的这么复杂,代码其实上来就可以撸出来。
|
||
|
||
但我还是强调一下,简单题是用来掌握方法论的,动规五部曲将在接下来的动态规划讲解中发挥重要作用,敬请期待!
|
||
|
||
就酱,循序渐进学算法,认准「代码随想录」!
|
||
|
||
|
||
|
||
|
||
|
||
## 其他语言版本
|
||
|
||
|
||
### Java
|
||
```Java
|
||
class Solution {
|
||
public int fib(int n) {
|
||
if (n < 2) return n;
|
||
int a = 0, b = 1, c = 0;
|
||
for (int i = 1; i < n; i++) {
|
||
c = a + b;
|
||
a = b;
|
||
b = c;
|
||
}
|
||
return c;
|
||
}
|
||
}
|
||
```
|
||
```java
|
||
//非压缩状态的版本
|
||
class Solution {
|
||
public int fib(int n) {
|
||
if (n <= 1) return n;
|
||
int[] dp = new int[n + 1];
|
||
dp[0] = 0;
|
||
dp[1] = 1;
|
||
for (int index = 2; index <= n; index++){
|
||
dp[index] = dp[index - 1] + dp[index - 2];
|
||
}
|
||
return dp[n];
|
||
}
|
||
}
|
||
```
|
||
|
||
### Python
|
||
```python
|
||
class Solution:
|
||
def fib(self, n: int) -> int:
|
||
if n < 2:
|
||
return n
|
||
a, b, c = 0, 1, 0
|
||
for i in range(1, n):
|
||
c = a + b
|
||
a, b = b, c
|
||
return c
|
||
|
||
# 动态规划 (注释版。无修饰)
|
||
class Solution:
|
||
def fib(self, n: int) -> int:
|
||
|
||
# 排除 Corner Case
|
||
if n == 0:
|
||
return 0
|
||
|
||
# 创建 dp table
|
||
dp = [0] * (n + 1)
|
||
|
||
# 初始化 dp 数组
|
||
dp[0] = 0
|
||
dp[1] = 1
|
||
|
||
# 遍历顺序: 由前向后。因为后面要用到前面的状态
|
||
for i in range(2, n + 1):
|
||
|
||
# 确定递归公式/状态转移公式
|
||
dp[i] = dp[i - 1] + dp[i - 2]
|
||
|
||
# 返回答案
|
||
return dp[n]
|
||
|
||
# 递归实现
|
||
class Solution:
|
||
def fib(self, n: int) -> int:
|
||
if n < 2:
|
||
return n
|
||
return self.fib(n - 1) + self.fib(n - 2)
|
||
```
|
||
|
||
### Go:
|
||
```Go
|
||
func fib(n int) int {
|
||
if n < 2 {
|
||
return n
|
||
}
|
||
a, b, c := 0, 1, 0
|
||
for i := 1; i < n; i++ {
|
||
c = a + b
|
||
a, b = b, c
|
||
}
|
||
return c
|
||
}
|
||
```
|
||
### Javascript
|
||
解法一
|
||
```Javascript
|
||
var fib = function(n) {
|
||
let dp = [0, 1]
|
||
for(let i = 2; i <= n; i++) {
|
||
dp[i] = dp[i - 1] + dp[i - 2]
|
||
}
|
||
console.log(dp)
|
||
return dp[n]
|
||
};
|
||
```
|
||
解法二:时间复杂度O(N),空间复杂度O(1)
|
||
```Javascript
|
||
var fib = function(n) {
|
||
// 动规状态转移中,当前结果只依赖前两个元素的结果,所以只要两个变量代替dp数组记录状态过程。将空间复杂度降到O(1)
|
||
let pre1 = 1
|
||
let pre2 = 0
|
||
let temp
|
||
if (n === 0) return 0
|
||
if (n === 1) return 1
|
||
for(let i = 2; i <= n; i++) {
|
||
temp = pre1
|
||
pre1 = pre1 + pre2
|
||
pre2 = temp
|
||
}
|
||
return pre1
|
||
};
|
||
```
|
||
|
||
### TypeScript
|
||
|
||
```typescript
|
||
function fib(n: number): number {
|
||
/**
|
||
dp[i]: 第i个斐波那契数
|
||
dp[0]: 0;
|
||
dp[1]:1;
|
||
...
|
||
dp[i] = dp[i - 1] + dp[i - 2];
|
||
*/
|
||
const dp: number[] = [];
|
||
dp[0] = 0;
|
||
dp[1] = 1;
|
||
for (let i = 2; i <= n; i++) {
|
||
dp[i] = dp[i - 1] + dp[i - 2];
|
||
}
|
||
return dp[n];
|
||
};
|
||
```
|
||
|
||
### C
|
||
|
||
动态规划:
|
||
```c
|
||
int fib(int n){
|
||
//当n <= 1时,返回n
|
||
if(n <= 1)
|
||
return n;
|
||
//动态开辟一个int数组,大小为n+1
|
||
int *dp = (int *)malloc(sizeof(int) * (n + 1));
|
||
//设置0号位为0,1号为为1
|
||
dp[0] = 0;
|
||
dp[1] = 1;
|
||
|
||
//从前向后遍历数组(i=2; i <= n; ++i),下标为n时的元素为dp[i-1] + dp[i-2]
|
||
int i;
|
||
for(i = 2; i <= n; ++i) {
|
||
dp[i] = dp[i - 1] + dp[i - 2];
|
||
}
|
||
return dp[n];
|
||
}
|
||
```
|
||
|
||
递归实现:
|
||
```c
|
||
int fib(int n){
|
||
//若n小于等于1,返回n
|
||
if(n <= 1)
|
||
return n;
|
||
//否则返回fib(n-1) + fib(n-2)
|
||
return fib(n-1) + fib(n-2);
|
||
}
|
||
```
|
||
### Rust
|
||
动态规划:
|
||
```Rust
|
||
pub fn fib(n: i32) -> i32 {
|
||
let n = n as usize;
|
||
let mut dp = vec![0; 31];
|
||
dp[1] = 1;
|
||
for i in 2..=n {
|
||
dp[i] = dp[i - 1] + dp[i - 2];
|
||
}
|
||
dp[n]
|
||
}
|
||
```
|
||
|
||
递归实现:
|
||
```Rust
|
||
pub fn fib(n: i32) -> i32 {
|
||
//若n小于等于1,返回n
|
||
f n <= 1 {
|
||
return n;
|
||
}
|
||
//否则返回fib(n-1) + fib(n-2)
|
||
return fib(n - 1) + fib(n - 2);
|
||
}
|
||
```
|
||
|
||
### Scala
|
||
|
||
动态规划:
|
||
```scala
|
||
object Solution {
|
||
def fib(n: Int): Int = {
|
||
if (n <= 1) return n
|
||
var dp = new Array[Int](n + 1)
|
||
dp(1) = 1
|
||
for (i <- 2 to n) {
|
||
dp(i) = dp(i - 1) + dp(i - 2)
|
||
}
|
||
dp(n)
|
||
}
|
||
}
|
||
```
|
||
|
||
递归:
|
||
```scala
|
||
object Solution {
|
||
def fib(n: Int): Int = {
|
||
if (n <= 1) return n
|
||
fib(n - 1) + fib(n - 2)
|
||
}
|
||
}
|
||
```
|
||
|
||
### C#
|
||
|
||
动态规划:
|
||
|
||
```c#
|
||
public class Solution
|
||
{
|
||
public int Fib(int n)
|
||
{
|
||
if(n<2) return n;
|
||
int[] dp = new int[2] { 0, 1 };
|
||
for (int i = 2; i <= n; i++)
|
||
{
|
||
int temp = dp[0] + dp[1];
|
||
dp[0] = dp[1];
|
||
dp[1] = temp;
|
||
}
|
||
return dp[1];
|
||
}
|
||
}
|
||
```
|
||
|
||
递归:
|
||
|
||
```c#
|
||
public class Solution
|
||
{
|
||
public int Fib(int n)
|
||
{
|
||
if(n<2)
|
||
return n;
|
||
return Fib(n-1)+Fib(n-2);
|
||
}
|
||
}
|
||
```
|
||
|
||
|
||
|
||
|
||
|
||
<p align="center">
|
||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
|
||
</a>
|