leetcode-master/problems/0059.螺旋矩阵II.md

797 lines
20 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<p align="center">
<a href="https://www.programmercarl.com/xunlian/xunlianying.html" target="_blank">
<img src="../pics/训练营.png" width="1000"/>
</a>
<p align="center"><strong><a href="./qita/join.md">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们受益!</strong></p>
# 59.螺旋矩阵II
[力扣题目链接](https://leetcode.cn/problems/spiral-matrix-ii/)
给定一个正整数 n生成一个包含 1 到 n^2 所有元素且元素按顺时针顺序螺旋排列的正方形矩阵。
示例:
输入: 3
输出:
[
[ 1, 2, 3 ],
[ 8, 9, 4 ],
[ 7, 6, 5 ]
]
## 算法公开课
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html)[拿下螺旋矩阵LeetCode59.螺旋矩阵II](https://www.bilibili.com/video/BV1SL4y1N7mV),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
## 思路
这道题目可以说在面试中出现频率较高的题目,**本题并不涉及到什么算法,就是模拟过程,但却十分考察对代码的掌控能力。**
要如何画出这个螺旋排列的正方形矩阵呢?
相信很多同学刚开始做这种题目的时候,上来就是一波判断猛如虎。
结果运行的时候各种问题,然后开始各种修修补补,最后发现改了这里那里有问题,改了那里这里又跑不起来了。
大家还记得我们在这篇文章[数组:每次遇到二分法,都是一看就会,一写就废](https://programmercarl.com/0704.二分查找.html)中讲解了二分法,提到如果要写出正确的二分法一定要坚持**循环不变量原则**。
而求解本题依然是要坚持循环不变量原则。
模拟顺时针画矩阵的过程:
* 填充上行从左到右
* 填充右列从上到下
* 填充下行从右到左
* 填充左列从下到上
由外向内一圈一圈这么画下去。
可以发现这里的边界条件非常多,在一个循环中,如此多的边界条件,如果不按照固定规则来遍历,那就是**一进循环深似海从此offer是路人**。
这里一圈下来,我们要画每四条边,这四条边怎么画,每画一条边都要坚持一致的左闭右开,或者左开右闭的原则,这样这一圈才能按照统一的规则画下来。
那么我按照左闭右开的原则,来画一圈,大家看一下:
![](https://code-thinking-1253855093.file.myqcloud.com/pics/20220922102236.png)
这里每一种颜色,代表一条边,我们遍历的长度,可以看出每一个拐角处的处理规则,拐角处让给新的一条边来继续画。
这也是坚持了每条边左闭右开的原则。
一些同学做这道题目之所以一直写不好,代码越写越乱。
就是因为在画每一条边的时候,一会左开右闭,一会左闭右闭,一会又来左闭右开,岂能不乱。
代码如下已经详细注释了每一步的目的可以看出while循环里判断的情况是很多的代码里处理的原则也是统一的左闭右开。
整体C++代码如下:
```CPP
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> res(n, vector<int>(n, 0)); // 使用vector定义一个二维数组
int startx = 0, starty = 0; // 定义每循环一个圈的起始位置
int loop = n / 2; // 每个圈循环几次例如n为奇数3那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理
int mid = n / 2; // 矩阵中间的位置例如n为3 中间的位置就是(11)n为5中间位置为(2, 2)
int count = 1; // 用来给矩阵中每一个空格赋值
int offset = 1; // 需要控制每一条边遍历的长度,每次循环右边界收缩一位
int i,j;
while (loop --) {
i = startx;
j = starty;
// 下面开始的四个for就是模拟转了一圈
// 模拟填充上行从左到右(左闭右开)
for (j; j < n - offset; j++) {
res[i][j] = count++;
}
// 模拟填充右列从上到下(左闭右开)
for (i; i < n - offset; i++) {
res[i][j] = count++;
}
// 模拟填充下行从右到左(左闭右开)
for (; j > starty; j--) {
res[i][j] = count++;
}
// 模拟填充左列从下到上(左闭右开)
for (; i > startx; i--) {
res[i][j] = count++;
}
// 第二圈开始的时候起始位置要各自加1 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1)
startx++;
starty++;
// offset 控制每一圈里每一条边遍历的长度
offset += 1;
}
// 如果n为奇数的话需要单独给矩阵最中间的位置赋值
if (n % 2) {
res[mid][mid] = count;
}
return res;
}
};
```
* 时间复杂度 O(n^2): 模拟遍历二维矩阵的时间
* 空间复杂度 O(1)
## 类似题目
* [54.螺旋矩阵](https://leetcode.cn/problems/spiral-matrix/)
* [剑指Offer 29.顺时针打印矩阵](https://leetcode.cn/problems/shun-shi-zhen-da-yin-ju-zhen-lcof/)
## 其他语言版本
### Java
```Java
class Solution {
public int[][] generateMatrix(int n) {
int[][] nums = new int[n][n];
int startX = 0, startY = 0; // 每一圈的起始点
int offset = 1;
int count = 1; // 矩阵中需要填写的数字
int loop = 1; // 记录当前的圈数
int i, j; // j 代表列, i 代表行;
while (loop <= n / 2) {
// 顶部
// 左闭右开,所以判断循环结束时, j 不能等于 n - offset
for (j = startY; j < n - offset; j++) {
nums[startX][j] = count++;
}
// 右列
// 左闭右开,所以判断循环结束时, i 不能等于 n - offset
for (i = startX; i < n - offset; i++) {
nums[i][j] = count++;
}
// 底部
// 左闭右开,所以判断循环结束时, j != startY
for (; j > startY; j--) {
nums[i][j] = count++;
}
// 左列
// 左闭右开,所以判断循环结束时, i != startX
for (; i > startX; i--) {
nums[i][j] = count++;
}
startX++;
startY++;
offset++;
loop++;
}
if (n % 2 == 1) { // n 为奇数时,单独处理矩阵中心的值
nums[startX][startY] = count;
}
return nums;
}
}
```
### python3:
```python
class Solution:
def generateMatrix(self, n: int) -> List[List[int]]:
nums = [[0] * n for _ in range(n)]
startx, starty = 0, 0 # 起始点
loop, mid = n // 2, n // 2 # 迭代次数、n为奇数时矩阵的中心点
count = 1 # 计数
for offset in range(1, loop + 1) : # 每循环一层偏移量加1偏移量从1开始
for i in range(starty, n - offset) : # 从左至右,左闭右开
nums[startx][i] = count
count += 1
for i in range(startx, n - offset) : # 从上至下
nums[i][n - offset] = count
count += 1
for i in range(n - offset, starty, -1) : # 从右至左
nums[n - offset][i] = count
count += 1
for i in range(n - offset, startx, -1) : # 从下至上
nums[i][starty] = count
count += 1
startx += 1 # 更新起始点
starty += 1
if n % 2 != 0 : # n为奇数时填充中心点
nums[mid][mid] = count
return nums
```
版本二:定义四个边界
```python
class Solution(object):
def generateMatrix(self, n):
if n <= 0:
return []
# 初始化 n x n 矩阵
matrix = [[0]*n for _ in range(n)]
# 初始化边界和起始值
top, bottom, left, right = 0, n-1, 0, n-1
num = 1
while top <= bottom and left <= right:
# 从左到右填充上边界
for i in range(left, right + 1):
matrix[top][i] = num
num += 1
top += 1
# 从上到下填充右边界
for i in range(top, bottom + 1):
matrix[i][right] = num
num += 1
right -= 1
# 从右到左填充下边界
for i in range(right, left - 1, -1):
matrix[bottom][i] = num
num += 1
bottom -= 1
# 从下到上填充左边界
for i in range(bottom, top - 1, -1):
matrix[i][left] = num
num += 1
left += 1
return matrix
```
### JavaScript:
```javascript
var generateMatrix = function(n) {
let startX = startY = 0; // 起始位置
let loop = Math.floor(n/2); // 旋转圈数
let mid = Math.floor(n/2); // 中间位置
let offset = 1; // 控制每一层填充元素个数
let count = 1; // 更新填充数字
let res = new Array(n).fill(0).map(() => new Array(n).fill(0));
while (loop--) {
let row = startX, col = startY;
// 上行从左到右(左闭右开)
for (; col < n - offset; col++) {
res[row][col] = count++;
}
// 右列从上到下(左闭右开)
for (; row < n - offset; row++) {
res[row][col] = count++;
}
// 下行从右到左(左闭右开)
for (; col > startY; col--) {
res[row][col] = count++;
}
// 左列做下到上(左闭右开)
for (; row > startX; row--) {
res[row][col] = count++;
}
// 更新起始位置
startX++;
startY++;
// 更新offset
offset += 1;
}
// 如果n为奇数的话需要单独给矩阵最中间的位置赋值
if (n % 2 === 1) {
res[mid][mid] = count;
}
return res;
};
```
### TypeScript:
```typescript
function generateMatrix(n: number): number[][] {
let loopNum: number = Math.floor(n / 2);
const resArr: number[][] = new Array(n).fill(1).map(i => new Array(n));
let chunkNum: number = n - 1;
let startX: number = 0;
let startY: number = 0;
let value: number = 1;
let x: number, y: number;
while (loopNum--) {
x = startX;
y = startY;
while (x < startX + chunkNum) {
resArr[y][x] = value;
x++;
value++;
}
while (y < startY + chunkNum) {
resArr[y][x] = value;
y++;
value++;
}
while (x > startX) {
resArr[y][x] = value;
x--;
value++;
}
while (y > startY) {
resArr[y][x] = value;
y--;
value++;
}
startX++;
startY++;
chunkNum -= 2;
}
if (n % 2 === 1) {
resArr[startX][startY] = value;
}
return resArr;
};
```
### Go:
```go
package main
import "fmt"
func main() {
n := 3
fmt.Println(generateMatrix(n))
}
func generateMatrix(n int) [][]int {
startx, starty := 0, 0
var loop int = n / 2
var center int = n / 2
count := 1
offset := 1
res := make([][]int, n)
for i := 0; i < n; i++ {
res[i] = make([]int, n)
}
for loop > 0 {
i, j := startx, starty
//行数不变 列数在变
for j = starty; j < n-offset; j++ {
res[startx][j] = count
count++
}
//列数不变是j 行数变
for i = startx; i < n-offset; i++ {
res[i][j] = count
count++
}
//行数不变 i 列数变 j--
for ; j > starty; j-- {
res[i][j] = count
count++
}
//列不变 行变
for ; i > startx; i-- {
res[i][j] = count
count++
}
startx++
starty++
offset++
loop--
}
if n%2 == 1 {
res[center][center] = n * n
}
return res
}
```
```go
func generateMatrix(n int) [][]int {
top, bottom := 0, n-1
left, right := 0, n-1
num := 1
tar := n * n
matrix := make([][]int, n)
for i := 0; i < n; i++ {
matrix[i] = make([]int, n)
}
for num <= tar {
for i := left; i <= right; i++ {
matrix[top][i] = num
num++
}
top++
for i := top; i <= bottom; i++ {
matrix[i][right] = num
num++
}
right--
for i := right; i >= left; i-- {
matrix[bottom][i] = num
num++
}
bottom--
for i := bottom; i >= top; i-- {
matrix[i][left] = num
num++
}
left++
}
return matrix
}
```
### Swift:
```swift
func generateMatrix(_ n: Int) -> [[Int]] {
var result = [[Int]](repeating: [Int](repeating: 0, count: n), count: n)
var startRow = 0
var startColumn = 0
var loopCount = n / 2
let mid = n / 2
var count = 1
var offset = 1
var row: Int
var column: Int
while loopCount > 0 {
row = startRow
column = startColumn
for c in column ..< startColumn + n - offset {
result[startRow][c] = count
count += 1
column += 1
}
for r in row ..< startRow + n - offset {
result[r][column] = count
count += 1
row += 1
}
for _ in startColumn ..< column {
result[row][column] = count
count += 1
column -= 1
}
for _ in startRow ..< row {
result[row][column] = count
count += 1
row -= 1
}
startRow += 1
startColumn += 1
offset += 2
loopCount -= 1
}
if (n % 2) != 0 {
result[mid][mid] = count
}
return result
}
```
### Rust:
```rust
impl Solution {
pub fn generate_matrix(n: i32) -> Vec<Vec<i32>> {
let mut res = vec![vec![0; n as usize]; n as usize];
let (mut startX, mut startY, mut offset): (usize, usize, usize) = (0, 0, 1);
let mut loopIdx = n/2;
let mid: usize = loopIdx as usize;
let mut count = 1;
let (mut i, mut j): (usize, usize) = (0, 0);
while loopIdx > 0 {
i = startX;
j = startY;
while j < (startY + (n as usize) - offset) {
res[i][j] = count;
count += 1;
j += 1;
}
while i < (startX + (n as usize) - offset) {
res[i][j] = count;
count += 1;
i += 1;
}
while j > startY {
res[i][j] = count;
count += 1;
j -= 1;
}
while i > startX {
res[i][j] = count;
count += 1;
i -= 1;
}
startX += 1;
startY += 1;
offset += 2;
loopIdx -= 1;
}
if(n % 2 == 1) {
res[mid][mid] = count;
}
res
}
}
```
### PHP:
```php
class Solution {
/**
* @param Integer $n
* @return Integer[][]
*/
function generateMatrix($n) {
// 初始化数组
$res = array_fill(0, $n, array_fill(0, $n, 0));
$mid = $loop = floor($n / 2);
$startX = $startY = 0;
$offset = 1;
$count = 1;
while ($loop > 0) {
$i = $startX;
$j = $startY;
for (; $j < $startY + $n - $offset; $j++) {
$res[$i][$j] = $count++;
}
for (; $i < $startX + $n - $offset; $i++) {
$res[$i][$j] = $count++;
}
for (; $j > $startY; $j--) {
$res[$i][$j] = $count++;
}
for (; $i > $startX; $i--) {
$res[$i][$j] = $count++;
}
$startX += 1;
$startY += 1;
$offset += 2;
$loop--;
}
if ($n % 2 == 1) {
$res[$mid][$mid] = $count;
}
return $res;
}
}
```
### C:
```c
int** generateMatrix(int n, int* returnSize, int** returnColumnSizes){
//初始化返回的结果数组的大小
*returnSize = n;
*returnColumnSizes = (int*)malloc(sizeof(int) * n);
//初始化返回结果数组ans
int** ans = (int**)malloc(sizeof(int*) * n);
int i;
for(i = 0; i < n; i++) {
ans[i] = (int*)malloc(sizeof(int) * n);
(*returnColumnSizes)[i] = n;
}
//设置每次循环的起始位置
int startX = 0;
int startY = 0;
//设置二维数组的中间值若n为奇数。需要最后在中间填入数字
int mid = n / 2;
//循环圈数
int loop = n / 2;
//偏移数
int offset = 1;
//当前要添加的元素
int count = 1;
while(loop) {
int i = startX;
int j = startY;
//模拟上侧从左到右
for(; j < startY + n - offset; j++) {
ans[startX][j] = count++;
}
//模拟右侧从上到下
for(; i < startX + n - offset; i++) {
ans[i][j] = count++;
}
//模拟下侧从右到左
for(; j > startY; j--) {
ans[i][j] = count++;
}
//模拟左侧从下到上
for(; i > startX; i--) {
ans[i][j] = count++;
}
//偏移值每次加2
offset+=2;
//遍历起始位置每次+1
startX++;
startY++;
loop--;
}
//若n为奇数需要单独给矩阵中间赋值
if(n%2)
ans[mid][mid] = count;
return ans;
}
```
### Scala:
```scala
object Solution {
def generateMatrix(n: Int): Array[Array[Int]] = {
var res = Array.ofDim[Int](n, n) // 定义一个n*n的二维矩阵
var num = 1 // 标志当前到了哪个数字
var i = 0 // 横坐标
var j = 0 // 竖坐标
while (num <= n * n) {
// 向右当j不越界并且下一个要填的数字是空白时
while (j < n && res(i)(j) == 0) {
res(i)(j) = num // 当前坐标等于num
num += 1 // num++
j += 1 // 竖坐标+1
}
i += 1 // 下移一行
j -= 1 // 左移一列
// 剩下的都同上
// 向下
while (i < n && res(i)(j) == 0) {
res(i)(j) = num
num += 1
i += 1
}
i -= 1
j -= 1
// 向左
while (j >= 0 && res(i)(j) == 0) {
res(i)(j) = num
num += 1
j -= 1
}
i -= 1
j += 1
// 向上
while (i >= 0 && res(i)(j) == 0) {
res(i)(j) = num
num += 1
i -= 1
}
i += 1
j += 1
}
res
}
}
```
### C#
```csharp
public class Solution {
public int[][] GenerateMatrix(int n) {
int[][] answer = new int[n][];
for(int i = 0; i < n; i++)
answer[i] = new int[n];
int start = 0;
int end = n - 1;
int tmp = 1;
while(tmp < n * n)
{
for(int i = start; i < end; i++) answer[start][i] = tmp++;
for(int i = start; i < end; i++) answer[i][end] = tmp++;
for(int i = end; i > start; i--) answer[end][i] = tmp++;
for(int i = end; i > start; i--) answer[i][start] = tmp++;
start++;
end--;
}
if(n % 2 == 1) answer[n / 2][n / 2] = tmp;
return answer;
}
}
```
### Ruby:
```ruby
def generate_matrix(n)
result = Array.new(n) { Array.new(n, 0) }
#循环次数
loop_times = 0
#步长
step = n - 1
val = 1
while loop_times < n / 2
#模拟从左向右
for i in 0..step - 1
#行数不变,列数变
result[loop_times][i+loop_times] = val
val += 1
end
#模拟从上到下
for i in 0..step - 1
#列数不变,行数变
result[i+loop_times][n-loop_times-1] = val
val += 1
end
#模拟从右到左
for i in 0..step - 1
#行数不变,列数变
result[n-loop_times-1][n-loop_times-i-1] = val
val += 1
end
#模拟从下到上
for i in 0..step - 1
#列数不变,行数变
result[n-loop_times-i-1][loop_times] = val
val += 1
end
loop_times += 1
step -= 2
end
#如果是奇数,则填充最后一个元素
result[n/2][n/2] = n**2 if n % 2
return result
end
```
<p align="center">
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
</a>