198 lines
6.3 KiB
Markdown
198 lines
6.3 KiB
Markdown
<p align="center">
|
||
<a href="https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ"><img src="https://img.shields.io/badge/知识星球-代码随想录-blue" alt=""></a>
|
||
<a href="https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw"><img src="https://img.shields.io/badge/刷题-微信群-green" alt=""></a>
|
||
<a href="https://img-blog.csdnimg.cn/20201210231711160.png"><img src="https://img.shields.io/badge/公众号-代码随想录-brightgreen" alt=""></a>
|
||
<a href="https://space.bilibili.com/525438321"><img src="https://img.shields.io/badge/B站-代码随想录-orange" alt=""></a>
|
||
</p>
|
||
<p align="center"><strong>欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
|
||
# 动态规划:一样的套路,再求一次完全平方数
|
||
|
||
## 279.完全平方数
|
||
|
||
题目地址:https://leetcode-cn.com/problems/perfect-squares/
|
||
|
||
给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
|
||
|
||
给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。
|
||
|
||
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
|
||
|
||
示例 1:
|
||
输入:n = 12
|
||
输出:3
|
||
解释:12 = 4 + 4 + 4
|
||
|
||
示例 2:
|
||
输入:n = 13
|
||
输出:2
|
||
解释:13 = 4 + 9
|
||
|
||
提示:
|
||
* 1 <= n <= 10^4
|
||
|
||
## 思路
|
||
|
||
可能刚看这种题感觉没啥思路,又平方和的,又最小数的。
|
||
|
||
**我来把题目翻译一下:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?**
|
||
|
||
感受出来了没,这么浓厚的完全背包氛围,而且和昨天的题目[动态规划:322. 零钱兑换](https://mp.weixin.qq.com/s/dyk-xNilHzNtVdPPLObSeQ)就是一样一样的!
|
||
|
||
动规五部曲分析如下:
|
||
|
||
1. 确定dp数组(dp table)以及下标的含义
|
||
|
||
**dp[i]:和为i的完全平方数的最少数量为dp[i]**
|
||
|
||
2. 确定递推公式
|
||
|
||
dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。
|
||
|
||
此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);
|
||
|
||
3. dp数组如何初始化
|
||
|
||
dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。
|
||
|
||
有同学问题,那0 * 0 也算是一种啊,为啥dp[0] 就是 0呢?
|
||
|
||
看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, ...),题目描述中可没说要从0开始,dp[0]=0完全是为了递推公式。
|
||
|
||
非0下标的dp[j]应该是多少呢?
|
||
|
||
从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j]);中可以看出每次dp[j]都要选最小的,**所以非0下标的dp[i]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖**。
|
||
|
||
4. 确定遍历顺序
|
||
|
||
我们知道这是完全背包,
|
||
|
||
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
|
||
|
||
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
|
||
|
||
在[动态规划:322. 零钱兑换](https://mp.weixin.qq.com/s/dyk-xNilHzNtVdPPLObSeQ)中我们就深入探讨了这个问题,本题也是一样的,是求最小数!
|
||
|
||
**所以本题外层for遍历背包,里层for遍历物品,还是外层for遍历物品,内层for遍历背包,都是可以的!**
|
||
|
||
我这里先给出外层遍历背包,里层遍历物品的代码:
|
||
|
||
```C++
|
||
vector<int> dp(n + 1, INT_MAX);
|
||
dp[0] = 0;
|
||
for (int i = 0; i <= n; i++) { // 遍历背包
|
||
for (int j = 1; j * j <= i; j++) { // 遍历物品
|
||
dp[i] = min(dp[i - j * j] + 1, dp[i]);
|
||
}
|
||
}
|
||
|
||
```
|
||
|
||
5. 举例推导dp数组
|
||
|
||
已输入n为5例,dp状态图如下:
|
||
|
||

|
||
|
||
dp[0] = 0
|
||
dp[1] = min(dp[0] + 1) = 1
|
||
dp[2] = min(dp[1] + 1) = 2
|
||
dp[3] = min(dp[2] + 1) = 3
|
||
dp[4] = min(dp[3] + 1, dp[0] + 1) = 1
|
||
dp[5] = min(dp[4] + 1, dp[1] + 1) = 2
|
||
|
||
最后的dp[n]为最终结果。
|
||
|
||
## C++代码
|
||
|
||
以上动规五部曲分析完毕C++代码如下:
|
||
|
||
```C++
|
||
// 版本一
|
||
class Solution {
|
||
public:
|
||
int numSquares(int n) {
|
||
vector<int> dp(n + 1, INT_MAX);
|
||
dp[0] = 0;
|
||
for (int i = 0; i <= n; i++) { // 遍历背包
|
||
for (int j = 1; j * j <= i; j++) { // 遍历物品
|
||
dp[i] = min(dp[i - j * j] + 1, dp[i]);
|
||
}
|
||
}
|
||
return dp[n];
|
||
}
|
||
};
|
||
```
|
||
|
||
同样我在给出先遍历物品,在遍历背包的代码,一样的可以AC的。
|
||
|
||
```C++
|
||
// 版本二
|
||
class Solution {
|
||
public:
|
||
int numSquares(int n) {
|
||
vector<int> dp(n + 1, INT_MAX);
|
||
dp[0] = 0;
|
||
for (int i = 1; i * i <= n; i++) { // 遍历物品
|
||
for (int j = 1; j <= n; j++) { // 遍历背包
|
||
if (j - i * i >= 0) {
|
||
dp[j] = min(dp[j - i * i] + 1, dp[j]);
|
||
}
|
||
}
|
||
}
|
||
return dp[n];
|
||
}
|
||
};
|
||
```
|
||
|
||
## 总结
|
||
|
||
如果大家认真做了昨天的题目[动态规划:322. 零钱兑换](https://mp.weixin.qq.com/s/dyk-xNilHzNtVdPPLObSeQ),今天这道就非常简单了,一样的套路一样的味道。
|
||
|
||
但如果没有按照「代码随想录」的题目顺序来做的话,做动态规划或者做背包问题,上来就做这道题,那还是挺难的!
|
||
|
||
经过前面的训练这道题已经是简单题了,哈哈哈
|
||
|
||
|
||
|
||
|
||
## 其他语言版本
|
||
|
||
|
||
Java:
|
||
```Java
|
||
class Solution {
|
||
public int numSquares(int n) {
|
||
int max = Integer.MAX_VALUE;
|
||
int[] dp = new int[n + 1];
|
||
//初始化
|
||
for (int j = 0; j <= n; j++) {
|
||
dp[j] = max;
|
||
}
|
||
//当和为0时,组合的个数为0
|
||
dp[0] = 0;
|
||
for (int i = 1; i * i <= n; i++) {
|
||
for (int j = i * i; j <= n; j++) {
|
||
if (dp[j - i * i] != max) {
|
||
dp[j] = Math.min(dp[j], dp[j - i * i] + 1);
|
||
}
|
||
}
|
||
}
|
||
return dp[n];
|
||
}
|
||
}
|
||
```
|
||
|
||
Python:
|
||
|
||
|
||
Go:
|
||
|
||
|
||
|
||
|
||
-----------------------
|
||
* 作者微信:[程序员Carl](https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw)
|
||
* B站视频:[代码随想录](https://space.bilibili.com/525438321)
|
||
* 知识星球:[代码随想录](https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ)
|
||
<div align="center"><img src=../pics/公众号.png width=450 alt=> </img></div>
|