345 lines
10 KiB
Markdown
345 lines
10 KiB
Markdown
<p align="center">
|
||
<a href="https://mp.weixin.qq.com/s/RsdcQ9umo09R6cfnwXZlrQ"><img src="https://img.shields.io/badge/PDF下载-代码随想录-blueviolet" alt=""></a>
|
||
<a href="https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw"><img src="https://img.shields.io/badge/刷题-微信群-green" alt=""></a>
|
||
<a href="https://space.bilibili.com/525438321"><img src="https://img.shields.io/badge/B站-代码随想录-orange" alt=""></a>
|
||
<a href="https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ"><img src="https://img.shields.io/badge/知识星球-代码随想录-blue" alt=""></a>
|
||
</p>
|
||
<p align="center"><strong>欢迎大家<a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
|
||
|
||
## 63. 不同路径 II
|
||
|
||
[力扣题目链接](https://leetcode-cn.com/problems/unique-paths-ii/)
|
||
|
||
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
|
||
|
||
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
|
||
|
||
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
|
||
|
||

|
||
|
||
网格中的障碍物和空位置分别用 1 和 0 来表示。
|
||
|
||
示例 1:
|
||
|
||

|
||
|
||
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
|
||
输出:2
|
||
解释:
|
||
3x3 网格的正中间有一个障碍物。
|
||
从左上角到右下角一共有 2 条不同的路径:
|
||
1. 向右 -> 向右 -> 向下 -> 向下
|
||
2. 向下 -> 向下 -> 向右 -> 向右
|
||
|
||
示例 2:
|
||
|
||

|
||
|
||
输入:obstacleGrid = [[0,1],[0,0]]
|
||
输出:1
|
||
|
||
提示:
|
||
|
||
* m == obstacleGrid.length
|
||
* n == obstacleGrid[i].length
|
||
* 1 <= m, n <= 100
|
||
* obstacleGrid[i][j] 为 0 或 1
|
||
|
||
|
||
## 思路
|
||
|
||
这道题相对于[62.不同路径](https://programmercarl.com/0062.不同路径.html) 就是有了障碍。
|
||
|
||
第一次接触这种题目的同学可能会有点懵,这有障碍了,应该怎么算呢?
|
||
|
||
[62.不同路径](https://programmercarl.com/0062.不同路径.html)中我们已经详细分析了没有障碍的情况,有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了。
|
||
|
||
动规五部曲:
|
||
|
||
1. 确定dp数组(dp table)以及下标的含义
|
||
|
||
dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
|
||
|
||
2. 确定递推公式
|
||
|
||
递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。
|
||
|
||
但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。
|
||
|
||
所以代码为:
|
||
|
||
```
|
||
if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候,再推导dp[i][j]
|
||
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
|
||
}
|
||
```
|
||
|
||
3. dp数组如何初始化
|
||
|
||
在[62.不同路径](https://programmercarl.com/0062.不同路径.html)不同路径中我们给出如下的初始化:
|
||
|
||
```
|
||
vector<vector<int>> dp(m, vector<int>(n, 0)); // 初始值为0
|
||
for (int i = 0; i < m; i++) dp[i][0] = 1;
|
||
for (int j = 0; j < n; j++) dp[0][j] = 1;
|
||
```
|
||
|
||
因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。
|
||
|
||
但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。
|
||
|
||
如图:
|
||
|
||

|
||
|
||
下标(0, j)的初始化情况同理。
|
||
|
||
所以本题初始化代码为:
|
||
|
||
```CPP
|
||
vector<vector<int>> dp(m, vector<int>(n, 0));
|
||
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
|
||
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
|
||
```
|
||
|
||
**注意代码里for循环的终止条件,一旦遇到obstacleGrid[i][0] == 1的情况就停止dp[i][0]的赋值1的操作,dp[0][j]同理**
|
||
|
||
4. 确定遍历顺序
|
||
|
||
从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。
|
||
|
||
代码如下:
|
||
|
||
```CPP
|
||
for (int i = 1; i < m; i++) {
|
||
for (int j = 1; j < n; j++) {
|
||
if (obstacleGrid[i][j] == 1) continue;
|
||
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
|
||
}
|
||
}
|
||
```
|
||
|
||
|
||
5. 举例推导dp数组
|
||
|
||
拿示例1来举例如题:
|
||
|
||

|
||
|
||
对应的dp table 如图:
|
||
|
||

|
||
|
||
如果这个图看不同,建议在理解一下递归公式,然后照着文章中说的遍历顺序,自己推导一下!
|
||
|
||
动规五部分分析完毕,对应C++代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
|
||
int m = obstacleGrid.size();
|
||
int n = obstacleGrid[0].size();
|
||
vector<vector<int>> dp(m, vector<int>(n, 0));
|
||
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
|
||
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
|
||
for (int i = 1; i < m; i++) {
|
||
for (int j = 1; j < n; j++) {
|
||
if (obstacleGrid[i][j] == 1) continue;
|
||
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
|
||
}
|
||
}
|
||
return dp[m - 1][n - 1];
|
||
}
|
||
};
|
||
```
|
||
* 时间复杂度O(n * m) n m 分别为obstacleGrid 长度和宽度
|
||
* 空间复杂度O(n * m)
|
||
|
||
## 总结
|
||
|
||
本题是[62.不同路径](https://programmercarl.com/0062.不同路径.html)的障碍版,整体思路大体一致。
|
||
|
||
但就算是做过62.不同路径,在做本题也会有感觉遇到障碍无从下手。
|
||
|
||
其实只要考虑到,遇到障碍dp[i][j]保持0就可以了。
|
||
|
||
也有一些小细节,例如:初始化的部分,很容易忽略了障碍之后应该都是0的情况。
|
||
|
||
就酱,「代码随想录」值得推荐给身边学算法的同学朋友们,关注后都会发现相见恨晚!
|
||
|
||
|
||
## 其他语言版本
|
||
|
||
Java:
|
||
|
||
```java
|
||
class Solution {
|
||
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
|
||
int n = obstacleGrid.length, m = obstacleGrid[0].length;
|
||
int[][] dp = new int[n][m];
|
||
dp[0][0] = 1 - obstacleGrid[0][0];
|
||
for (int i = 1; i < m; i++) {
|
||
if (obstacleGrid[0][i] == 0 && dp[0][i - 1] == 1) {
|
||
dp[0][i] = 1;
|
||
}
|
||
}
|
||
for (int i = 1; i < n; i++) {
|
||
if (obstacleGrid[i][0] == 0 && dp[i - 1][0] == 1) {
|
||
dp[i][0] = 1;
|
||
}
|
||
}
|
||
for (int i = 1; i < n; i++) {
|
||
for (int j = 1; j < m; j++) {
|
||
if (obstacleGrid[i][j] == 1) continue;
|
||
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
|
||
}
|
||
}
|
||
return dp[n - 1][m - 1];
|
||
}
|
||
}
|
||
```
|
||
|
||
|
||
Python:
|
||
|
||
```python
|
||
class Solution:
|
||
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
|
||
# 构造一个DP table
|
||
row = len(obstacleGrid)
|
||
col = len(obstacleGrid[0])
|
||
dp = [[0 for _ in range(col)] for _ in range(row)]
|
||
|
||
dp[0][0] = 1 if obstacleGrid[0][0] != 1 else 0
|
||
if dp[0][0] == 0: return 0 # 如果第一个格子就是障碍,return 0
|
||
# 第一行
|
||
for i in range(1, col):
|
||
if obstacleGrid[0][i] != 1:
|
||
dp[0][i] = dp[0][i-1]
|
||
|
||
# 第一列
|
||
for i in range(1, row):
|
||
if obstacleGrid[i][0] != 1:
|
||
dp[i][0] = dp[i-1][0]
|
||
print(dp)
|
||
|
||
for i in range(1, row):
|
||
for j in range(1, col):
|
||
if obstacleGrid[i][j] != 1:
|
||
dp[i][j] = dp[i-1][j] + dp[i][j-1]
|
||
return dp[-1][-1]
|
||
```
|
||
|
||
```python
|
||
class Solution:
|
||
"""
|
||
使用一维dp数组
|
||
"""
|
||
|
||
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
|
||
m, n = len(obstacleGrid), len(obstacleGrid[0])
|
||
|
||
# 初始化dp数组
|
||
# 该数组缓存当前行
|
||
curr = [0] * n
|
||
for j in range(n):
|
||
if obstacleGrid[0][j] == 1:
|
||
break
|
||
curr[j] = 1
|
||
|
||
for i in range(1, m): # 从第二行开始
|
||
for j in range(n): # 从第一列开始,因为第一列可能有障碍物
|
||
# 有障碍物处无法通行,状态就设成0
|
||
if obstacleGrid[i][j] == 1:
|
||
curr[j] = 0
|
||
elif j > 0:
|
||
# 等价于
|
||
# dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
|
||
curr[j] = curr[j] + curr[j - 1]
|
||
# 隐含的状态更新
|
||
# dp[i][0] = dp[i - 1][0]
|
||
|
||
return curr[n - 1]
|
||
```
|
||
|
||
|
||
Go:
|
||
|
||
```go
|
||
func uniquePathsWithObstacles(obstacleGrid [][]int) int {
|
||
m,n:= len(obstacleGrid),len(obstacleGrid[0])
|
||
// 定义一个dp数组
|
||
dp := make([][]int,m)
|
||
for i,_ := range dp {
|
||
dp[i] = make([]int,n)
|
||
}
|
||
// 初始化
|
||
for i:=0;i<m;i++ {
|
||
// 如果是障碍物, 后面的就都是0, 不用循环了
|
||
if obstacleGrid[i][0] == 1 {
|
||
break
|
||
}
|
||
dp[i][0]=1
|
||
}
|
||
for i:=0;i<n;i++ {
|
||
if obstacleGrid[0][i] == 1 {
|
||
break
|
||
}
|
||
dp[0][i]=1
|
||
}
|
||
// dp数组推导过程
|
||
for i:=1;i<m;i++ {
|
||
for j:=1;j<n;j++ {
|
||
// 如果obstacleGrid[i][j]这个点是障碍物, 那么我们的dp[i][j]保持为0
|
||
if obstacleGrid[i][j] != 1 {
|
||
// 否则我们需要计算当前点可以到达的路径数
|
||
dp[i][j] = dp[i-1][j]+dp[i][j-1]
|
||
}
|
||
}
|
||
}
|
||
// debug遍历dp
|
||
//for i,_ := range dp {
|
||
// for j,_ := range dp[i] {
|
||
// fmt.Printf("%.2v,",dp[i][j])
|
||
// }
|
||
// fmt.Println()
|
||
//}
|
||
return dp[m-1][n-1]
|
||
}
|
||
|
||
```
|
||
|
||
Javascript
|
||
``` Javascript
|
||
var uniquePathsWithObstacles = function(obstacleGrid) {
|
||
const m = obstacleGrid.length
|
||
const n = obstacleGrid[0].length
|
||
const dp = Array(m).fill().map(item => Array(n).fill(0))
|
||
|
||
for (let i = 0; i < m && obstacleGrid[i][0] === 0; ++i) {
|
||
dp[i][0] = 1
|
||
}
|
||
|
||
for (let i = 0; i < n && obstacleGrid[0][i] === 0; ++i) {
|
||
dp[0][i] = 1
|
||
}
|
||
|
||
for (let i = 1; i < m; ++i) {
|
||
for (let j = 1; j < n; ++j) {
|
||
dp[i][j] = obstacleGrid[i][j] === 1 ? 0 : dp[i - 1][j] + dp[i][j - 1]
|
||
}
|
||
}
|
||
|
||
return dp[m - 1][n - 1]
|
||
};
|
||
```
|
||
|
||
|
||
-----------------------
|
||
* 作者微信:[程序员Carl](https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw)
|
||
* B站视频:[代码随想录](https://space.bilibili.com/525438321)
|
||
* 知识星球:[代码随想录](https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ)
|
||
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码.jpg width=450> </img></div>
|