leetcode-master/problems/kamacoder/0101.孤岛的总面积.md

588 lines
14 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<p align="center"><strong><a href="./qita/join.md">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们受益!</strong></p>
# 101. 孤岛的总面积
[卡码网101. 孤岛的总面积](https://kamacoder.com/problempage.php?pid=1173)
题目描述
给定一个由 1陆地和 0组成的矩阵岛屿指的是由水平或垂直方向上相邻的陆地单元格组成的区域且完全被水域单元格包围。孤岛是那些位于矩阵内部、所有单元格都不接触边缘的岛屿。
现在你需要计算所有孤岛的总面积,岛屿面积的计算方式为组成岛屿的陆地的总数。
输入描述
第一行包含两个整数 N, M表示矩阵的行数和列数。之后 N 行,每行包含 M 个数字,数字为 1 或者 0。
输出描述
输出一个整数,表示所有孤岛的总面积,如果不存在孤岛,则输出 0。
输入示例
```
4 5
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
```
输出示例:
1
提示信息:
![](https://code-thinking-1253855093.file.myqcloud.com/pics/20240517105557.png)
在矩阵中心部分的岛屿,因为没有任何一个单元格接触到矩阵边缘,所以该岛屿属于孤岛,总面积为 1。
数据范围:
1 <= M, N <= 50。
## 思路
本题使用dfsbfs并查集都是可以的。
本题要求找到不靠边的陆地面积,那么我们只要从周边找到陆地然后 通过 dfs或者bfs 将周边靠陆地且相邻的陆地都变成海洋,然后再去重新遍历地图 统计此时还剩下的陆地就可以了。
如图,在遍历地图周围四个边,靠地图四边的陆地,都为绿色,
![](https://code-thinking-1253855093.file.myqcloud.com/pics/20220830104632.png)
在遇到地图周边陆地的时候将1都变为0此时地图为这样
![](https://code-thinking-1253855093.file.myqcloud.com/pics/20220830104651.png)
然后我们再去遍历这个地图,遇到有陆地的地方,去采用深搜或者广搜,边统计所有陆地。
如果对深搜或者广搜不够了解,建议先看这里:[深度优先搜索精讲](./图论深搜理论基础.md)[广度优先搜索精讲](./图论广搜理论基础.md)。
采用深度优先搜索的代码如下:
```CPP
#include <iostream>
#include <vector>
using namespace std;
int dir[4][2] = {-1, 0, 0, -1, 1, 0, 0, 1}; // 保存四个方向
int count; // 统计符合题目要求的陆地空格数量
void dfs(vector<vector<int>>& grid, int x, int y) {
grid[x][y] = 0;
count++;
for (int i = 0; i < 4; i++) { // 向四个方向遍历
int nextx = x + dir[i][0];
int nexty = y + dir[i][1];
// 超过边界
if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue;
// 不符合条件,不继续遍历
if (grid[nextx][nexty] == 0) continue;
dfs (grid, nextx, nexty);
}
return;
}
int main() {
int n, m;
cin >> n >> m;
vector<vector<int>> grid(n, vector<int>(m, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grid[i][j];
}
}
// 从左侧边,和右侧边 向中间遍历
for (int i = 0; i < n; i++) {
if (grid[i][0] == 1) dfs(grid, i, 0);
if (grid[i][m - 1] == 1) dfs(grid, i, m - 1);
}
// 从上边和下边 向中间遍历
for (int j = 0; j < m; j++) {
if (grid[0][j] == 1) dfs(grid, 0, j);
if (grid[n - 1][j] == 1) dfs(grid, n - 1, j);
}
count = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 1) dfs(grid, i, j);
}
}
cout << count << endl;
}
```
采用广度优先搜索的代码如下:
```CPP
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
int count = 0;
int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 四个方向
void bfs(vector<vector<int>>& grid, int x, int y) {
queue<pair<int, int>> que;
que.push({x, y});
grid[x][y] = 0; // 只要加入队列,立刻标记
count++;
while(!que.empty()) {
pair<int ,int> cur = que.front(); que.pop();
int curx = cur.first;
int cury = cur.second;
for (int i = 0; i < 4; i++) {
int nextx = curx + dir[i][0];
int nexty = cury + dir[i][1];
if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue; // 越界了,直接跳过
if (grid[nextx][nexty] == 1) {
que.push({nextx, nexty});
count++;
grid[nextx][nexty] = 0; // 只要加入队列立刻标记
}
}
}
}
int main() {
int n, m;
cin >> n >> m;
vector<vector<int>> grid(n, vector<int>(m, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grid[i][j];
}
}
// 从左侧边,和右侧边 向中间遍历
for (int i = 0; i < n; i++) {
if (grid[i][0] == 1) bfs(grid, i, 0);
if (grid[i][m - 1] == 1) bfs(grid, i, m - 1);
}
// 从上边和下边 向中间遍历
for (int j = 0; j < m; j++) {
if (grid[0][j] == 1) bfs(grid, 0, j);
if (grid[n - 1][j] == 1) bfs(grid, n - 1, j);
}
count = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 1) bfs(grid, i, j);
}
}
cout << count << endl;
}
```
## 其他语言版本
### Java
``` java
import java.util.*;
public class Main {
private static int count = 0;
private static final int[][] dir = {{0, 1}, {1, 0}, {-1, 0}, {0, -1}}; // 四个方向
private static void bfs(int[][] grid, int x, int y) {
Queue<int[]> que = new LinkedList<>();
que.add(new int[]{x, y});
grid[x][y] = 0; // 只要加入队列,立刻标记
count++;
while (!que.isEmpty()) {
int[] cur = que.poll();
int curx = cur[0];
int cury = cur[1];
for (int i = 0; i < 4; i++) {
int nextx = curx + dir[i][0];
int nexty = cury + dir[i][1];
if (nextx < 0 || nextx >= grid.length || nexty < 0 || nexty >= grid[0].length) continue; // 越界了,直接跳过
if (grid[nextx][nexty] == 1) {
que.add(new int[]{nextx, nexty});
count++;
grid[nextx][nexty] = 0; // 只要加入队列立刻标记
}
}
}
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int m = scanner.nextInt();
int[][] grid = new int[n][m];
// 读取网格
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
grid[i][j] = scanner.nextInt();
}
}
// 从左侧边和右侧边向中间遍历
for (int i = 0; i < n; i++) {
if (grid[i][0] == 1) bfs(grid, i, 0);
if (grid[i][m - 1] == 1) bfs(grid, i, m - 1);
}
// 从上边和下边向中间遍历
for (int j = 0; j < m; j++) {
if (grid[0][j] == 1) bfs(grid, 0, j);
if (grid[n - 1][j] == 1) bfs(grid, n - 1, j);
}
count = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 1) bfs(grid, i, j);
}
}
System.out.println(count);
}
}
```
### Python
```python
from collections import deque
# 处理输入
n, m = list(map(int, input().strip()))
g = []
for _ in range(n):
row = list(map(int, input().strip()))
g.append(row)
# 定义四个方向、孤岛面积(遍历完边缘后会被重置)
directions = [[0,1], [1,0], [-1,0], [0,-1]]
count = 0
# 广搜
def bfs(r, c):
global count
q = deque()
q.append((r, c))
g[r][c] = 0
count += 1
while q:
r, c = q.popleft()
for di in directions:
next_r = r + di[0]
next_c = c + di[1]
if next_c < 0 or next_c >= m or next_r < 0 or next_r >= n:
continue
if g[next_r][next_c] == 1:
q.append((next_r, next_c))
g[next_r][next_c] = 0
count += 1
for i in range(n):
if g[i][0] == 1: bfs(i, 0)
if g[i][m-1] == 1: bfs(i, m-1)
for i in range(m):
if g[0][i] == 1: bfs(0, i)
if g[n-1][i] == 1: bfs(n-1, i)
count = 0
for i in range(n):
for j in range(m):
if g[i][j] == 1: bfs(i, j)
print(count)
```
### Go
``` go
package main
import (
"fmt"
)
var count int
var dir = [4][2]int{{0, 1}, {1, 0}, {-1, 0}, {0, -1}} // 四个方向
func bfs(grid [][]int, x, y int) {
queue := [][2]int{{x, y}}
grid[x][y] = 0 // 只要加入队列立刻标记
count++
for len(queue) > 0 {
cur := queue[0]
queue = queue[1:]
curx, cury := cur[0], cur[1]
for i := 0; i < 4; i++ {
nextx := curx + dir[i][0]
nexty := cury + dir[i][1]
if nextx < 0 || nextx >= len(grid) || nexty < 0 || nexty >= len(grid[0]) {
continue // 越界了,直接跳过
}
if grid[nextx][nexty] == 1 {
queue = append(queue, [2]int{nextx, nexty})
count++
grid[nextx][nexty] = 0 // 只要加入队列立刻标记
}
}
}
}
func main() {
var n, m int
fmt.Scan(&n, &m)
grid := make([][]int, n)
for i := range grid {
grid[i] = make([]int, m)
}
for i := 0; i < n; i++ {
for j := 0; j < m; j++ {
fmt.Scan(&grid[i][j])
}
}
// 从左侧边和右侧边向中间遍历
for i := 0; i < n; i++ {
if grid[i][0] == 1 {
bfs(grid, i, 0)
}
if grid[i][m-1] == 1 {
bfs(grid, i, m-1)
}
}
// 从上边和下边向中间遍历
for j := 0; j < m; j++ {
if grid[0][j] == 1 {
bfs(grid, 0, j)
}
if grid[n-1][j] == 1 {
bfs(grid, n-1, j)
}
}
// 清空之前的计数
count = 0
// 遍历所有位置
for i := 0; i < n; i++ {
for j := 0; j < m; j++ {
if grid[i][j] == 1 {
bfs(grid, i, j)
}
}
}
fmt.Println(count)
}
```
### Rust
### Javascript
#### 深搜版
```javascript
const r1 = require('readline').createInterface({ input: process.stdin });
// 创建readline接口
let iter = r1[Symbol.asyncIterator]();
// 创建异步迭代器
const readline = async () => (await iter.next()).value;
let graph // 地图
let N, M // 地图大小
let count = 0 // 孤岛的总面积
const dir = [[0, 1], [1, 0], [0, -1], [-1, 0]] //方向
// 读取输入,初始化地图
const initGraph = async () => {
let line = await readline();
[N, M] = line.split(' ').map(Number);
graph = new Array(N).fill(0).map(() => new Array(M).fill(0))
for (let i = 0; i < N; i++) {
line = await readline()
line = line.split(' ').map(Number)
for (let j = 0; j < M; j++) {
graph[i][j] = line[j]
}
}
}
/**
* @description: 从xy开始深度优先遍历地图
* @param {*} graph 地图
* @param {*} x 开始搜索节点的下标
* @param {*} y 开始搜索节点的下标
* @return {*}
*/
const dfs = (graph, x, y) => {
if(graph[x][y] === 0) return
graph[x][y] = 0 // 标记为海洋
for (let i = 0; i < 4; i++) {
let nextx = x + dir[i][0]
let nexty = y + dir[i][1]
if (nextx < 0 || nextx >= N || nexty < 0 || nexty >= M) continue
dfs(graph, nextx, nexty)
}
}
(async function () {
// 读取输入,初始化地图
await initGraph()
// 遍历地图左右两边
for (let i = 0; i < N; i++) {
if (graph[i][0] === 1) dfs(graph, i, 0)
if (graph[i][M - 1] === 1) dfs(graph, i, M - 1)
}
// 遍历地图上下两边
for (let j = 0; j < M; j++) {
if (graph[0][j] === 1) dfs(graph, 0, j)
if (graph[N - 1][j] === 1) dfs(graph, N - 1, j)
}
count = 0
// 统计孤岛的总面积
for (let i = 0; i < N; i++) {
for (let j = 0; j < M; j++) {
if (graph[i][j] === 1) count++
}
}
console.log(count);
})()
```
#### 广搜版
```javascript
const r1 = require('readline').createInterface({ input: process.stdin });
// 创建readline接口
let iter = r1[Symbol.asyncIterator]();
// 创建异步迭代器
const readline = async () => (await iter.next()).value;
let graph // 地图
let N, M // 地图大小
let count = 0 // 孤岛的总面积
const dir = [[0, 1], [1, 0], [0, -1], [-1, 0]] //方向
// 读取输入,初始化地图
const initGraph = async () => {
let line = await readline();
[N, M] = line.split(' ').map(Number);
graph = new Array(N).fill(0).map(() => new Array(M).fill(0))
for (let i = 0; i < N; i++) {
line = await readline()
line = line.split(' ').map(Number)
for (let j = 0; j < M; j++) {
graph[i][j] = line[j]
}
}
}
/**
* @description: 从xy开始广度优先遍历地图
* @param {*} graph 地图
* @param {*} x 开始搜索节点的下标
* @param {*} y 开始搜索节点的下标
* @return {*}
*/
const bfs = (graph, x, y) => {
let queue = []
queue.push([x, y])
graph[x][y] = 0 // 只要加入队列,立刻标记
while (queue.length) {
let [xx, yy] = queue.shift()
for (let i = 0; i < 4; i++) {
let nextx = xx + dir[i][0]
let nexty = yy + dir[i][1]
if (nextx < 0 || nextx >= N || nexty < 0 || nexty >= M) continue
if (graph[nextx][nexty] === 1) {
queue.push([nextx, nexty])
graph[nextx][nexty] = 0 // 只要加入队列,立刻标记
}
}
}
}
(async function () {
// 读取输入,初始化地图
await initGraph()
// 遍历地图左右两边
for (let i = 0; i < N; i++) {
if (graph[i][0] === 1) bfs(graph, i, 0)
if (graph[i][M - 1] === 1) bfs(graph, i, M - 1)
}
// 遍历地图上下两边
for (let j = 0; j < M; j++) {
if (graph[0][j] === 1) bfs(graph, 0, j)
if (graph[N - 1][j] === 1) bfs(graph, N - 1, j)
}
count = 0
// 统计孤岛的总面积
for (let i = 0; i < N; i++) {
for (let j = 0; j < M; j++) {
if (graph[i][j] === 1) count++
}
}
console.log(count);
})()
```
### TypeScript
### PhP
### Swift
### Scala
### C#
### Dart
### C