409 lines
12 KiB
Markdown
409 lines
12 KiB
Markdown
<p align="center">
|
||
<a href="https://programmercarl.com/other/xunlianying.html" target="_blank">
|
||
<img src="../pics/训练营.png" width="1000"/>
|
||
</a>
|
||
<p align="center"><strong><a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
|
||
|
||
|
||
# 135. 分发糖果
|
||
|
||
[力扣题目链接](https://leetcode.cn/problems/candy/)
|
||
|
||
老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。
|
||
|
||
你需要按照以下要求,帮助老师给这些孩子分发糖果:
|
||
|
||
* 每个孩子至少分配到 1 个糖果。
|
||
* 相邻的孩子中,评分高的孩子必须获得更多的糖果。
|
||
|
||
那么这样下来,老师至少需要准备多少颗糖果呢?
|
||
|
||
示例 1:
|
||
* 输入: [1,0,2]
|
||
* 输出: 5
|
||
* 解释: 你可以分别给这三个孩子分发 2、1、2 颗糖果。
|
||
|
||
示例 2:
|
||
* 输入: [1,2,2]
|
||
* 输出: 4
|
||
* 解释: 你可以分别给这三个孩子分发 1、2、1 颗糖果。第三个孩子只得到 1 颗糖果,这已满足上述两个条件。
|
||
|
||
## 算法公开课
|
||
|
||
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[贪心算法,两者兼顾很容易顾此失彼!LeetCode:135.分发糖果](https://www.bilibili.com/video/BV1ev4y1r7wN),相信结合视频在看本篇题解,更有助于大家对本题的理解**。
|
||
|
||
|
||
## 思路
|
||
|
||
这道题目一定是要确定一边之后,再确定另一边,例如比较每一个孩子的左边,然后再比较右边,**如果两边一起考虑一定会顾此失彼**。
|
||
|
||
|
||
先确定右边评分大于左边的情况(也就是从前向后遍历)
|
||
|
||
此时局部最优:只要右边评分比左边大,右边的孩子就多一个糖果,全局最优:相邻的孩子中,评分高的右孩子获得比左边孩子更多的糖果
|
||
|
||
局部最优可以推出全局最优。
|
||
|
||
如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心:candyVec[i] = candyVec[i - 1] + 1
|
||
|
||
代码如下:
|
||
|
||
```CPP
|
||
// 从前向后
|
||
for (int i = 1; i < ratings.size(); i++) {
|
||
if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
|
||
}
|
||
```
|
||
|
||
如图:
|
||
|
||
|
||

|
||
|
||
再确定左孩子大于右孩子的情况(从后向前遍历)
|
||
|
||
遍历顺序这里有同学可能会有疑问,为什么不能从前向后遍历呢?
|
||
|
||
因为 rating[5]与rating[4]的比较 要利用上 rating[5]与rating[6]的比较结果,所以 要从后向前遍历。
|
||
|
||
如果从前向后遍历,rating[5]与rating[4]的比较 就不能用上 rating[5]与rating[6]的比较结果了 。如图:
|
||
|
||

|
||
|
||
**所以确定左孩子大于右孩子的情况一定要从后向前遍历!**
|
||
|
||
|
||
如果 ratings[i] > ratings[i + 1],此时candyVec[i](第i个小孩的糖果数量)就有两个选择了,一个是candyVec[i + 1] + 1(从右边这个加1得到的糖果数量),一个是candyVec[i](之前比较右孩子大于左孩子得到的糖果数量)。
|
||
|
||
那么又要贪心了,局部最优:取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,保证第i个小孩的糖果数量既大于左边的也大于右边的。全局最优:相邻的孩子中,评分高的孩子获得更多的糖果。
|
||
|
||
局部最优可以推出全局最优。
|
||
|
||
所以就取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,**candyVec[i]只有取最大的才能既保持对左边candyVec[i - 1]的糖果多,也比右边candyVec[i + 1]的糖果多**。
|
||
|
||
如图:
|
||
|
||
|
||

|
||
|
||
所以该过程代码如下:
|
||
|
||
```CPP
|
||
// 从后向前
|
||
for (int i = ratings.size() - 2; i >= 0; i--) {
|
||
if (ratings[i] > ratings[i + 1] ) {
|
||
candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1);
|
||
}
|
||
}
|
||
```
|
||
|
||
整体代码如下:
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
int candy(vector<int>& ratings) {
|
||
vector<int> candyVec(ratings.size(), 1);
|
||
// 从前向后
|
||
for (int i = 1; i < ratings.size(); i++) {
|
||
if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
|
||
}
|
||
// 从后向前
|
||
for (int i = ratings.size() - 2; i >= 0; i--) {
|
||
if (ratings[i] > ratings[i + 1] ) {
|
||
candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1);
|
||
}
|
||
}
|
||
// 统计结果
|
||
int result = 0;
|
||
for (int i = 0; i < candyVec.size(); i++) result += candyVec[i];
|
||
return result;
|
||
}
|
||
};
|
||
```
|
||
|
||
* 时间复杂度: O(n)
|
||
* 空间复杂度: O(n)
|
||
|
||
|
||
|
||
## 总结
|
||
|
||
这在leetcode上是一道困难的题目,其难点就在于贪心的策略,如果在考虑局部的时候想两边兼顾,就会顾此失彼。
|
||
|
||
那么本题我采用了两次贪心的策略:
|
||
|
||
* 一次是从左到右遍历,只比较右边孩子评分比左边大的情况。
|
||
* 一次是从右到左遍历,只比较左边孩子评分比右边大的情况。
|
||
|
||
这样从局部最优推出了全局最优,即:相邻的孩子中,评分高的孩子获得更多的糖果。
|
||
|
||
|
||
|
||
## 其他语言版本
|
||
|
||
|
||
### Java
|
||
```java
|
||
class Solution {
|
||
/**
|
||
分两个阶段
|
||
1、起点下标1 从左往右,只要 右边 比 左边 大,右边的糖果=左边 + 1
|
||
2、起点下标 ratings.length - 2 从右往左, 只要左边 比 右边 大,此时 左边的糖果应该 取本身的糖果数(符合比它左边大) 和 右边糖果数 + 1 二者的最大值,这样才符合 它比它左边的大,也比它右边大
|
||
*/
|
||
public int candy(int[] ratings) {
|
||
int len = ratings.length;
|
||
int[] candyVec = new int[len];
|
||
candyVec[0] = 1;
|
||
for (int i = 1; i < len; i++) {
|
||
candyVec[i] = (ratings[i] > ratings[i - 1]) ? candyVec[i - 1] + 1 : 1;
|
||
}
|
||
|
||
for (int i = len - 2; i >= 0; i--) {
|
||
if (ratings[i] > ratings[i + 1]) {
|
||
candyVec[i] = Math.max(candyVec[i], candyVec[i + 1] + 1);
|
||
}
|
||
}
|
||
|
||
int ans = 0;
|
||
for (int num : candyVec) {
|
||
ans += num;
|
||
}
|
||
return ans;
|
||
}
|
||
}
|
||
```
|
||
|
||
### Python
|
||
```python
|
||
class Solution:
|
||
def candy(self, ratings: List[int]) -> int:
|
||
candyVec = [1] * len(ratings)
|
||
|
||
# 从前向后遍历,处理右侧比左侧评分高的情况
|
||
for i in range(1, len(ratings)):
|
||
if ratings[i] > ratings[i - 1]:
|
||
candyVec[i] = candyVec[i - 1] + 1
|
||
|
||
# 从后向前遍历,处理左侧比右侧评分高的情况
|
||
for i in range(len(ratings) - 2, -1, -1):
|
||
if ratings[i] > ratings[i + 1]:
|
||
candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1)
|
||
|
||
# 统计结果
|
||
result = sum(candyVec)
|
||
return result
|
||
|
||
```
|
||
|
||
### Go
|
||
```go
|
||
func candy(ratings []int) int {
|
||
/**先确定一边,再确定另外一边
|
||
1.先从左到右,当右边的大于左边的就加1
|
||
2.再从右到左,当左边的大于右边的就再加1
|
||
**/
|
||
need := make([]int, len(ratings))
|
||
sum := 0
|
||
// 初始化(每个人至少一个糖果)
|
||
for i := 0; i < len(ratings); i++ {
|
||
need[i] = 1
|
||
}
|
||
// 1.先从左到右,当右边的大于左边的就加1
|
||
for i := 0; i < len(ratings) - 1; i++ {
|
||
if ratings[i] < ratings[i+1] {
|
||
need[i+1] = need[i] + 1
|
||
}
|
||
}
|
||
// 2.再从右到左,当左边的大于右边的就右边加1,但要花费糖果最少,所以需要做下判断
|
||
for i := len(ratings)-1; i > 0; i-- {
|
||
if ratings[i-1] > ratings[i] {
|
||
need[i-1] = findMax(need[i-1], need[i]+1)
|
||
}
|
||
}
|
||
//计算总共糖果
|
||
for i := 0; i < len(ratings); i++ {
|
||
sum += need[i]
|
||
}
|
||
return sum
|
||
}
|
||
func findMax(num1 int, num2 int) int {
|
||
if num1 > num2 {
|
||
return num1
|
||
}
|
||
return num2
|
||
}
|
||
```
|
||
|
||
### Javascript
|
||
```Javascript
|
||
var candy = function(ratings) {
|
||
let candys = new Array(ratings.length).fill(1)
|
||
|
||
for(let i = 1; i < ratings.length; i++) {
|
||
if(ratings[i] > ratings[i - 1]) {
|
||
candys[i] = candys[i - 1] + 1
|
||
}
|
||
}
|
||
|
||
for(let i = ratings.length - 2; i >= 0; i--) {
|
||
if(ratings[i] > ratings[i + 1]) {
|
||
candys[i] = Math.max(candys[i], candys[i + 1] + 1)
|
||
}
|
||
}
|
||
|
||
let count = candys.reduce((a, b) => {
|
||
return a + b
|
||
})
|
||
|
||
return count
|
||
};
|
||
```
|
||
|
||
|
||
### Rust
|
||
```rust
|
||
pub fn candy(ratings: Vec<i32>) -> i32 {
|
||
let mut candies = vec![1i32; ratings.len()];
|
||
for i in 1..ratings.len() {
|
||
if ratings[i - 1] < ratings[i] {
|
||
candies[i] = candies[i - 1] + 1;
|
||
}
|
||
}
|
||
|
||
for i in (0..ratings.len()-1).rev() {
|
||
if ratings[i] > ratings[i + 1] {
|
||
candies[i] = candies[i].max(candies[i + 1] + 1);
|
||
}
|
||
}
|
||
candies.iter().sum()
|
||
}
|
||
```
|
||
|
||
### C
|
||
```c
|
||
#define max(a, b) (((a) > (b)) ? (a) : (b))
|
||
|
||
int *initCandyArr(int size) {
|
||
int *candyArr = (int*)malloc(sizeof(int) * size);
|
||
|
||
int i;
|
||
for(i = 0; i < size; ++i)
|
||
candyArr[i] = 1;
|
||
|
||
return candyArr;
|
||
}
|
||
|
||
int candy(int* ratings, int ratingsSize){
|
||
// 初始化数组,每个小孩开始至少有一颗糖
|
||
int *candyArr = initCandyArr(ratingsSize);
|
||
|
||
int i;
|
||
// 先判断右边是否比左边评分高。若是,右边孩子的糖果为左边孩子+1(candyArr[i] = candyArr[i - 1] + 1)
|
||
for(i = 1; i < ratingsSize; ++i) {
|
||
if(ratings[i] > ratings[i - 1])
|
||
candyArr[i] = candyArr[i - 1] + 1;
|
||
}
|
||
|
||
// 再判断左边评分是否比右边高。
|
||
// 若是,左边孩子糖果为右边孩子糖果+1/自己所持糖果最大值。(若糖果已经比右孩子+1多,则不需要更多糖果)
|
||
// 举例:ratings为[1, 2, 3, 1]。此时评分为3的孩子在判断右边比左边大后为3,虽然它比最末尾的1(ratings[3])大,但是candyArr[3]为1。所以不必更新candyArr[2]
|
||
for(i = ratingsSize - 2; i >= 0; --i) {
|
||
if(ratings[i] > ratings[i + 1])
|
||
candyArr[i] = max(candyArr[i], candyArr[i + 1] + 1);
|
||
}
|
||
|
||
// 求出糖果之和
|
||
int result = 0;
|
||
for(i = 0; i < ratingsSize; ++i) {
|
||
result += candyArr[i];
|
||
}
|
||
return result;
|
||
}
|
||
```
|
||
|
||
### TypeScript
|
||
|
||
```typescript
|
||
function candy(ratings: number[]): number {
|
||
const candies: number[] = [];
|
||
candies[0] = 1;
|
||
// 保证右边高分孩子一定比左边低分孩子发更多的糖果
|
||
for (let i = 1, length = ratings.length; i < length; i++) {
|
||
if (ratings[i] > ratings[i - 1]) {
|
||
candies[i] = candies[i - 1] + 1;
|
||
} else {
|
||
candies[i] = 1;
|
||
}
|
||
}
|
||
// 保证左边高分孩子一定比右边低分孩子发更多的糖果
|
||
for (let i = ratings.length - 2; i >= 0; i--) {
|
||
if (ratings[i] > ratings[i + 1]) {
|
||
candies[i] = Math.max(candies[i], candies[i + 1] + 1);
|
||
}
|
||
}
|
||
return candies.reduce((pre, cur) => pre + cur);
|
||
};
|
||
```
|
||
|
||
### Scala
|
||
|
||
```scala
|
||
object Solution {
|
||
def candy(ratings: Array[Int]): Int = {
|
||
var candyVec = new Array[Int](ratings.length)
|
||
for (i <- candyVec.indices) candyVec(i) = 1
|
||
// 从前向后
|
||
for (i <- 1 until candyVec.length) {
|
||
if (ratings(i) > ratings(i - 1)) {
|
||
candyVec(i) = candyVec(i - 1) + 1
|
||
}
|
||
}
|
||
|
||
// 从后向前
|
||
for (i <- (candyVec.length - 2) to 0 by -1) {
|
||
if (ratings(i) > ratings(i + 1)) {
|
||
candyVec(i) = math.max(candyVec(i), candyVec(i + 1) + 1)
|
||
}
|
||
}
|
||
|
||
candyVec.sum // 求和
|
||
}
|
||
}
|
||
```
|
||
### C#
|
||
```csharp
|
||
public class Solution
|
||
{
|
||
public int Candy(int[] ratings)
|
||
{
|
||
int[] candies = new int[ratings.Length];
|
||
for (int i = 0; i < candies.Length; i++)
|
||
{
|
||
candies[i] = 1;
|
||
}
|
||
for (int i = 1; i < ratings.Length; i++)
|
||
{
|
||
if (ratings[i] > ratings[i - 1])
|
||
{
|
||
candies[i] = candies[i - 1] + 1;
|
||
}
|
||
}
|
||
for (int i = ratings.Length - 2; i >= 0; i--)
|
||
{
|
||
if (ratings[i] > ratings[i + 1])
|
||
{
|
||
candies[i] = Math.Max(candies[i], candies[i + 1] + 1);
|
||
}
|
||
}
|
||
return candies.Sum();
|
||
}
|
||
}
|
||
```
|
||
|
||
|
||
<p align="center">
|
||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
|
||
</a>
|
||
|