79 lines
2.5 KiB
Markdown
79 lines
2.5 KiB
Markdown
|
||
[1] 0 ,输出的是0,不是-1啊,这颗真是天坑j
|
||
|
||
```
|
||
// dp初始化很重要
|
||
class Solution {
|
||
public:
|
||
int coinChange(vector<int>& coins, int amount) {
|
||
//int dp[10003] = {0}; // 并没有给所有元素赋值0
|
||
if (amount == 0) return 0; // 这个要注意
|
||
vector<int> dp(10003, 0);
|
||
// 不能这么初始化啊,[2147483647],2 这种例子 直接gg,但是这种初始化有助于理解
|
||
for (int i = 0; i < coins.size(); i++) {
|
||
if (coins[i] <= amount) // 还必须要加这个判断
|
||
dp[coins[i]] = 1;
|
||
}
|
||
for (int i = 1; i <= amount; i++) {
|
||
for (int j = 0; j < coins.size(); j++) {
|
||
if (i - coins[j] >= 0 && dp[i - coins[j]]!=0 ) {
|
||
if (dp[i] == 0) dp[i] = dp[i - coins[j]] + 1;
|
||
else dp[i] = min(dp[i - coins[j]] + 1, dp[i]);
|
||
}
|
||
}
|
||
//for (int k = 0 ; k<= amount; k++) {
|
||
// cout << dp[k] << " ";
|
||
//}
|
||
//cout << endl;
|
||
}
|
||
if (dp[amount] == 0) return -1;
|
||
return dp[amount];
|
||
|
||
}
|
||
};
|
||
```
|
||
|
||
我用求组合的思路也过了,
|
||
```
|
||
class Solution {
|
||
public:
|
||
int coinChange(vector<int>& coins, int amount) {
|
||
//int dp[10003] = {0}; // 并没有给所有元素赋值0
|
||
//if (amount == 0) return 0;
|
||
vector<int> dp(10003, INT_MAX);
|
||
dp[0] = 0;
|
||
for (int i = 0 ;i < coins.size(); i++) { // 求组合
|
||
for (int j = 1; j <= amount; j++) {
|
||
if (j - coins[i] >= 0 && dp[j - coins[i]] != INT_MAX) {
|
||
dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
|
||
}
|
||
}
|
||
}
|
||
if (dp[amount] == INT_MAX) return -1;
|
||
return dp[amount];
|
||
}
|
||
};
|
||
```
|
||
|
||
这种标记d代码简短,但思路有点绕
|
||
```
|
||
class Solution {
|
||
public:
|
||
int coinChange(vector<int>& coins, int amount) {
|
||
//int dp[10003] = {0}; // 并没有给所有元素赋值0
|
||
// if (amount == 0) return 0; 这个都可以省略了,但很多同学不知道 还需要注意这个
|
||
vector<int> dp(10003, 0);
|
||
for (int i = 1; i <= amount; i++) {
|
||
dp[i] = INT_MAX;
|
||
for (int j = 0; j < coins.size(); j++) {
|
||
if (i - coins[j] >= 0 && dp[i - coins[j]]!=INT_MAX ) {
|
||
dp[i] = min(dp[i - coins[j]] + 1, dp[i]);
|
||
}
|
||
}
|
||
}
|
||
if (dp[amount] == INT_MAX) return -1;
|
||
return dp[amount];
|
||
}
|
||
};
|
||
```
|