628 lines
19 KiB
Markdown
628 lines
19 KiB
Markdown
<p align="center">
|
||
<a href="https://mp.weixin.qq.com/s/RsdcQ9umo09R6cfnwXZlrQ"><img src="https://img.shields.io/badge/PDF下载-代码随想录-blueviolet" alt=""></a>
|
||
<a href="https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw"><img src="https://img.shields.io/badge/刷题-微信群-green" alt=""></a>
|
||
<a href="https://space.bilibili.com/525438321"><img src="https://img.shields.io/badge/B站-代码随想录-orange" alt=""></a>
|
||
<a href="https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ"><img src="https://img.shields.io/badge/知识星球-代码随想录-blue" alt=""></a>
|
||
</p>
|
||
<p align="center"><strong>欢迎大家<a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
|
||
|
||
|
||
> 求高度还是求深度,你搞懂了不?
|
||
|
||
# 110.平衡二叉树
|
||
|
||
题目地址:https://leetcode-cn.com/problems/balanced-binary-tree/
|
||
|
||
给定一个二叉树,判断它是否是高度平衡的二叉树。
|
||
|
||
本题中,一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。
|
||
|
||
示例 1:
|
||
|
||
给定二叉树 [3,9,20,null,null,15,7]
|
||
|
||

|
||
|
||
返回 true 。
|
||
|
||
示例 2:
|
||
|
||
给定二叉树 [1,2,2,3,3,null,null,4,4]
|
||
|
||

|
||
|
||
返回 false 。
|
||
|
||
# 题外话
|
||
|
||
|
||
咋眼一看这道题目和[104.二叉树的最大深度](https://mp.weixin.qq.com/s/jRaRcRerhEHepQbt-aKstw)很像,其实有很大区别。
|
||
|
||
这里强调一波概念:
|
||
|
||
* 二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数。
|
||
* 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数。
|
||
|
||
但leetcode中强调的深度和高度很明显是按照节点来计算的,如图:
|
||
|
||

|
||
|
||
关于根节点的深度究竟是1 还是 0,不同的地方有不一样的标准,leetcode的题目中都是以节点为一度,即根节点深度是1。但维基百科上定义用边为一度,即根节点的深度是0,我们暂时以leetcode为准(毕竟要在这上面刷题)。
|
||
|
||
因为求深度可以从上到下去查 所以需要前序遍历(中左右),而高度只能从下到上去查,所以只能后序遍历(左右中)
|
||
|
||
有的同学一定疑惑,为什么[104.二叉树的最大深度](https://mp.weixin.qq.com/s/jRaRcRerhEHepQbt-aKstw)中求的是二叉树的最大深度,也用的是后序遍历。
|
||
|
||
**那是因为代码的逻辑其实是求的根节点的高度,而根节点的高度就是这颗树的最大深度,所以才可以使用后序遍历。**
|
||
|
||
在[104.二叉树的最大深度](https://mp.weixin.qq.com/s/jRaRcRerhEHepQbt-aKstw)中,如果真正求取二叉树的最大深度,代码应该写成如下:(前序遍历)
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
int result;
|
||
void getDepth(TreeNode* node, int depth) {
|
||
result = depth > result ? depth : result; // 中
|
||
|
||
if (node->left == NULL && node->right == NULL) return ;
|
||
|
||
if (node->left) { // 左
|
||
depth++; // 深度+1
|
||
getDepth(node->left, depth);
|
||
depth--; // 回溯,深度-1
|
||
}
|
||
if (node->right) { // 右
|
||
depth++; // 深度+1
|
||
getDepth(node->right, depth);
|
||
depth--; // 回溯,深度-1
|
||
}
|
||
return ;
|
||
}
|
||
int maxDepth(TreeNode* root) {
|
||
result = 0;
|
||
if (root == 0) return result;
|
||
getDepth(root, 1);
|
||
return result;
|
||
}
|
||
};
|
||
```
|
||
|
||
**可以看出使用了前序(中左右)的遍历顺序,这才是真正求深度的逻辑!**
|
||
|
||
注意以上代码是为了把细节体现出来,简化一下代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
int result;
|
||
void getDepth(TreeNode* node, int depth) {
|
||
result = depth > result ? depth : result; // 中
|
||
if (node->left == NULL && node->right == NULL) return ;
|
||
if (node->left) { // 左
|
||
getDepth(node->left, depth + 1);
|
||
}
|
||
if (node->right) { // 右
|
||
getDepth(node->right, depth + 1);
|
||
}
|
||
return ;
|
||
}
|
||
int maxDepth(TreeNode* root) {
|
||
result = 0;
|
||
if (root == 0) return result;
|
||
getDepth(root, 1);
|
||
return result;
|
||
}
|
||
};
|
||
```
|
||
|
||
# 本题思路
|
||
|
||
## 递归
|
||
|
||
此时大家应该明白了既然要求比较高度,必然是要后序遍历。
|
||
|
||
递归三步曲分析:
|
||
|
||
1. 明确递归函数的参数和返回值
|
||
|
||
参数的话为传入的节点指针,就没有其他参数需要传递了,返回值要返回传入节点为根节点树的深度。
|
||
|
||
那么如何标记左右子树是否差值大于1呢。
|
||
|
||
如果当前传入节点为根节点的二叉树已经不是二叉平衡树了,还返回高度的话就没有意义了。
|
||
|
||
所以如果已经不是二叉平衡树了,可以返回-1 来标记已经不符合平衡树的规则了。
|
||
|
||
代码如下:
|
||
|
||
|
||
```
|
||
// -1 表示已经不是平衡二叉树了,否则返回值是以该节点为根节点树的高度
|
||
int getDepth(TreeNode* node)
|
||
```
|
||
|
||
2. 明确终止条件
|
||
|
||
递归的过程中依然是遇到空节点了为终止,返回0,表示当前节点为根节点的树高度为0
|
||
|
||
代码如下:
|
||
|
||
```
|
||
if (node == NULL) {
|
||
return 0;
|
||
}
|
||
```
|
||
|
||
3. 明确单层递归的逻辑
|
||
|
||
如何判断当前传入节点为根节点的二叉树是否是平衡二叉树呢,当然是左子树高度和右子树高度相差。
|
||
|
||
分别求出左右子树的高度,然后如果差值小于等于1,则返回当前二叉树的高度,否则则返回-1,表示已经不是二叉树了。
|
||
|
||
代码如下:
|
||
|
||
```CPP
|
||
int leftDepth = depth(node->left); // 左
|
||
if (leftDepth == -1) return -1;
|
||
int rightDepth = depth(node->right); // 右
|
||
if (rightDepth == -1) return -1;
|
||
|
||
int result;
|
||
if (abs(leftDepth - rightDepth) > 1) { // 中
|
||
result = -1;
|
||
} else {
|
||
result = 1 + max(leftDepth, rightDepth); // 以当前节点为根节点的最大高度
|
||
}
|
||
|
||
return result;
|
||
```
|
||
|
||
代码精简之后如下:
|
||
|
||
```CPP
|
||
int leftDepth = getDepth(node->left);
|
||
if (leftDepth == -1) return -1;
|
||
int rightDepth = getDepth(node->right);
|
||
if (rightDepth == -1) return -1;
|
||
return abs(leftDepth - rightDepth) > 1 ? -1 : 1 + max(leftDepth, rightDepth);
|
||
```
|
||
|
||
此时递归的函数就已经写出来了,这个递归的函数传入节点指针,返回以该节点为根节点的二叉树的高度,如果不是二叉平衡树,则返回-1。
|
||
|
||
getDepth整体代码如下:
|
||
|
||
```CPP
|
||
int getDepth(TreeNode* node) {
|
||
if (node == NULL) {
|
||
return 0;
|
||
}
|
||
int leftDepth = getDepth(node->left);
|
||
if (leftDepth == -1) return -1;
|
||
int rightDepth = getDepth(node->right);
|
||
if (rightDepth == -1) return -1;
|
||
return abs(leftDepth - rightDepth) > 1 ? -1 : 1 + max(leftDepth, rightDepth);
|
||
}
|
||
```
|
||
|
||
最后本题整体递归代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
// 返回以该节点为根节点的二叉树的高度,如果不是二叉搜索树了则返回-1
|
||
int getDepth(TreeNode* node) {
|
||
if (node == NULL) {
|
||
return 0;
|
||
}
|
||
int leftDepth = getDepth(node->left);
|
||
if (leftDepth == -1) return -1; // 说明左子树已经不是二叉平衡树
|
||
int rightDepth = getDepth(node->right);
|
||
if (rightDepth == -1) return -1; // 说明右子树已经不是二叉平衡树
|
||
return abs(leftDepth - rightDepth) > 1 ? -1 : 1 + max(leftDepth, rightDepth);
|
||
}
|
||
bool isBalanced(TreeNode* root) {
|
||
return getDepth(root) == -1 ? false : true;
|
||
}
|
||
};
|
||
```
|
||
|
||
## 迭代
|
||
|
||
在[104.二叉树的最大深度](https://mp.weixin.qq.com/s/jRaRcRerhEHepQbt-aKstw)中我们可以使用层序遍历来求深度,但是就不能直接用层序遍历来求高度了,这就体现出求高度和求深度的不同。
|
||
|
||
本题的迭代方式可以先定义一个函数,专门用来求高度。
|
||
|
||
这个函数通过栈模拟的后序遍历找每一个节点的高度(其实是通过求传入节点为根节点的最大深度来求的高度)
|
||
|
||
代码如下:
|
||
|
||
```CPP
|
||
// cur节点的最大深度,就是cur的高度
|
||
int getDepth(TreeNode* cur) {
|
||
stack<TreeNode*> st;
|
||
if (cur != NULL) st.push(cur);
|
||
int depth = 0; // 记录深度
|
||
int result = 0;
|
||
while (!st.empty()) {
|
||
TreeNode* node = st.top();
|
||
if (node != NULL) {
|
||
st.pop();
|
||
st.push(node); // 中
|
||
st.push(NULL);
|
||
depth++;
|
||
if (node->right) st.push(node->right); // 右
|
||
if (node->left) st.push(node->left); // 左
|
||
|
||
} else {
|
||
st.pop();
|
||
node = st.top();
|
||
st.pop();
|
||
depth--;
|
||
}
|
||
result = result > depth ? result : depth;
|
||
}
|
||
return result;
|
||
}
|
||
```
|
||
|
||
然后再用栈来模拟前序遍历,遍历每一个节点的时候,再去判断左右孩子的高度是否符合,代码如下:
|
||
|
||
```CPP
|
||
bool isBalanced(TreeNode* root) {
|
||
stack<TreeNode*> st;
|
||
if (root == NULL) return true;
|
||
st.push(root);
|
||
while (!st.empty()) {
|
||
TreeNode* node = st.top(); // 中
|
||
st.pop();
|
||
if (abs(getDepth(node->left) - getDepth(node->right)) > 1) { // 判断左右孩子高度是否符合
|
||
return false;
|
||
}
|
||
if (node->right) st.push(node->right); // 右(空节点不入栈)
|
||
if (node->left) st.push(node->left); // 左(空节点不入栈)
|
||
}
|
||
return true;
|
||
}
|
||
```
|
||
|
||
整体代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
private:
|
||
int getDepth(TreeNode* cur) {
|
||
stack<TreeNode*> st;
|
||
if (cur != NULL) st.push(cur);
|
||
int depth = 0; // 记录深度
|
||
int result = 0;
|
||
while (!st.empty()) {
|
||
TreeNode* node = st.top();
|
||
if (node != NULL) {
|
||
st.pop();
|
||
st.push(node); // 中
|
||
st.push(NULL);
|
||
depth++;
|
||
if (node->right) st.push(node->right); // 右
|
||
if (node->left) st.push(node->left); // 左
|
||
|
||
} else {
|
||
st.pop();
|
||
node = st.top();
|
||
st.pop();
|
||
depth--;
|
||
}
|
||
result = result > depth ? result : depth;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
public:
|
||
bool isBalanced(TreeNode* root) {
|
||
stack<TreeNode*> st;
|
||
if (root == NULL) return true;
|
||
st.push(root);
|
||
while (!st.empty()) {
|
||
TreeNode* node = st.top(); // 中
|
||
st.pop();
|
||
if (abs(getDepth(node->left) - getDepth(node->right)) > 1) {
|
||
return false;
|
||
}
|
||
if (node->right) st.push(node->right); // 右(空节点不入栈)
|
||
if (node->left) st.push(node->left); // 左(空节点不入栈)
|
||
}
|
||
return true;
|
||
}
|
||
};
|
||
```
|
||
|
||
当然此题用迭代法,其实效率很低,因为没有很好的模拟回溯的过程,所以迭代法有很多重复的计算。
|
||
|
||
虽然理论上所有的递归都可以用迭代来实现,但是有的场景难度可能比较大。
|
||
|
||
**例如:都知道回溯法其实就是递归,但是很少人用迭代的方式去实现回溯算法!**
|
||
|
||
因为对于回溯算法已经是非常复杂的递归了,如果在用迭代的话,就是自己给自己找麻烦,效率也并不一定高。
|
||
|
||
# 总结
|
||
|
||
通过本题可以了解求二叉树深度 和 二叉树高度的差异,求深度适合用前序遍历,而求高度适合用后序遍历。
|
||
|
||
本题迭代法其实有点复杂,大家可以有一个思路,也不一定说非要写出来。
|
||
|
||
但是递归方式是一定要掌握的!
|
||
|
||
|
||
# 其他语言版本
|
||
|
||
## Java
|
||
|
||
```Java
|
||
class Solution {
|
||
/**
|
||
* 递归法
|
||
*/
|
||
public boolean isBalanced(TreeNode root) {
|
||
return getHeight(root) != -1;
|
||
}
|
||
|
||
private int getHeight(TreeNode root) {
|
||
if (root == null) {
|
||
return 0;
|
||
}
|
||
int leftHeight = getHeight(root.left);
|
||
if (leftHeight == -1) {
|
||
return -1;
|
||
}
|
||
int rightHeight = getHeight(root.right);
|
||
if (rightHeight == -1) {
|
||
return -1;
|
||
}
|
||
// 左右子树高度差大于1,return -1表示已经不是平衡树了
|
||
if (Math.abs(leftHeight - rightHeight) > 1) {
|
||
return -1;
|
||
}
|
||
return Math.max(leftHeight, rightHeight) + 1;
|
||
}
|
||
}
|
||
|
||
class Solution {
|
||
/**
|
||
* 迭代法,效率较低,计算高度时会重复遍历
|
||
* 时间复杂度:O(n^2)
|
||
*/
|
||
public boolean isBalanced(TreeNode root) {
|
||
if (root == null) {
|
||
return true;
|
||
}
|
||
Stack<TreeNode> stack = new Stack<>();
|
||
TreeNode pre = null;
|
||
while (root!= null || !stack.isEmpty()) {
|
||
while (root != null) {
|
||
stack.push(root);
|
||
root = root.left;
|
||
}
|
||
TreeNode inNode = stack.peek();
|
||
// 右结点为null或已经遍历过
|
||
if (inNode.right == null || inNode.right == pre) {
|
||
// 比较左右子树的高度差,输出
|
||
if (Math.abs(getHeight(inNode.left) - getHeight(inNode.right)) > 1) {
|
||
return false;
|
||
}
|
||
stack.pop();
|
||
pre = inNode;
|
||
root = null;// 当前结点下,没有要遍历的结点了
|
||
} else {
|
||
root = inNode.right;// 右结点还没遍历,遍历右结点
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/**
|
||
* 层序遍历,求结点的高度
|
||
*/
|
||
public int getHeight(TreeNode root) {
|
||
if (root == null) {
|
||
return 0;
|
||
}
|
||
Deque<TreeNode> deque = new LinkedList<>();
|
||
deque.offer(root);
|
||
int depth = 0;
|
||
while (!deque.isEmpty()) {
|
||
int size = deque.size();
|
||
depth++;
|
||
for (int i = 0; i < size; i++) {
|
||
TreeNode poll = deque.poll();
|
||
if (poll.left != null) {
|
||
deque.offer(poll.left);
|
||
}
|
||
if (poll.right != null) {
|
||
deque.offer(poll.right);
|
||
}
|
||
}
|
||
}
|
||
return depth;
|
||
}
|
||
}
|
||
|
||
class Solution {
|
||
/**
|
||
* 优化迭代法,针对暴力迭代法的getHeight方法做优化,利用TreeNode.val来保存当前结点的高度,这样就不会有重复遍历
|
||
* 获取高度算法时间复杂度可以降到O(1),总的时间复杂度降为O(n)。
|
||
* 时间复杂度:O(n)
|
||
*/
|
||
public boolean isBalanced(TreeNode root) {
|
||
if (root == null) {
|
||
return true;
|
||
}
|
||
Stack<TreeNode> stack = new Stack<>();
|
||
TreeNode pre = null;
|
||
while (root != null || !stack.isEmpty()) {
|
||
while (root != null) {
|
||
stack.push(root);
|
||
root = root.left;
|
||
}
|
||
TreeNode inNode = stack.peek();
|
||
// 右结点为null或已经遍历过
|
||
if (inNode.right == null || inNode.right == pre) {
|
||
// 输出
|
||
if (Math.abs(getHeight(inNode.left) - getHeight(inNode.right)) > 1) {
|
||
return false;
|
||
}
|
||
stack.pop();
|
||
pre = inNode;
|
||
root = null;// 当前结点下,没有要遍历的结点了
|
||
} else {
|
||
root = inNode.right;// 右结点还没遍历,遍历右结点
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/**
|
||
* 求结点的高度
|
||
*/
|
||
public int getHeight(TreeNode root) {
|
||
if (root == null) {
|
||
return 0;
|
||
}
|
||
int leftHeight = root.left != null ? root.left.val : 0;
|
||
int rightHeight = root.right != null ? root.right.val : 0;
|
||
int height = Math.max(leftHeight, rightHeight) + 1;
|
||
root.val = height;// 用TreeNode.val来保存当前结点的高度
|
||
return height;
|
||
}
|
||
}
|
||
```
|
||
|
||
## Python
|
||
|
||
递归法:
|
||
```python
|
||
class Solution:
|
||
def isBalanced(self, root: TreeNode) -> bool:
|
||
return True if self.getDepth(root) != -1 else False
|
||
|
||
#返回以该节点为根节点的二叉树的高度,如果不是二叉搜索树了则返回-1
|
||
def getDepth(self, node):
|
||
if not node:
|
||
return 0
|
||
leftDepth = self.getDepth(node.left)
|
||
if leftDepth == -1: return -1 #说明左子树已经不是二叉平衡树
|
||
rightDepth = self.getDepth(node.right)
|
||
if rightDepth == -1: return -1 #说明右子树已经不是二叉平衡树
|
||
return -1 if abs(leftDepth - rightDepth)>1 else 1 + max(leftDepth, rightDepth)
|
||
```
|
||
|
||
迭代法:
|
||
```python
|
||
class Solution:
|
||
def isBalanced(self, root: TreeNode) -> bool:
|
||
st = []
|
||
if not root:
|
||
return True
|
||
st.append(root)
|
||
while st:
|
||
node = st.pop() #中
|
||
if abs(self.getDepth(node.left) - self.getDepth(node.right)) > 1:
|
||
return False
|
||
if node.right:
|
||
st.append(node.right) #右(空节点不入栈)
|
||
if node.left:
|
||
st.append(node.left) #左(空节点不入栈)
|
||
return True
|
||
|
||
def getDepth(self, cur):
|
||
st = []
|
||
if cur:
|
||
st.append(cur)
|
||
depth = 0
|
||
result = 0
|
||
while st:
|
||
node = st.pop()
|
||
if node:
|
||
st.append(node) #中
|
||
st.append(None)
|
||
depth += 1
|
||
if node.right: st.append(node.right) #右
|
||
if node.left: st.append(node.left) #左
|
||
else:
|
||
node = st.pop()
|
||
depth -= 1
|
||
result = max(result, depth)
|
||
return result
|
||
```
|
||
|
||
|
||
## Go
|
||
```Go
|
||
func isBalanced(root *TreeNode) bool {
|
||
if root==nil{
|
||
return true
|
||
}
|
||
if !isBalanced(root.Left) || !isBalanced(root.Right){
|
||
return false
|
||
}
|
||
LeftH:=maxdepth(root.Left)+1
|
||
RightH:=maxdepth(root.Right)+1
|
||
if abs(LeftH-RightH)>1{
|
||
return false
|
||
}
|
||
return true
|
||
}
|
||
func maxdepth(root *TreeNode)int{
|
||
if root==nil{
|
||
return 0
|
||
}
|
||
return max(maxdepth(root.Left),maxdepth(root.Right))+1
|
||
}
|
||
func max(a,b int)int{
|
||
if a>b{
|
||
return a
|
||
}
|
||
return b
|
||
}
|
||
func abs(a int)int{
|
||
if a<0{
|
||
return -a
|
||
}
|
||
return a
|
||
}
|
||
```
|
||
|
||
## JavaScript
|
||
```javascript
|
||
var isBalanced = function(root) {
|
||
//还是用递归三部曲 + 后序遍历 左右中 当前左子树右子树高度相差大于1就返回-1
|
||
// 1. 确定递归函数参数以及返回值
|
||
const getDepth=function(node){
|
||
// 2. 确定递归函数终止条件
|
||
if(node===null){
|
||
return 0;
|
||
}
|
||
// 3. 确定单层递归逻辑
|
||
let leftDepth=getDepth(node.left);//左子树高度
|
||
if(leftDepth===-1){
|
||
return -1;
|
||
}
|
||
let rightDepth=getDepth(node.right);//右子树高度
|
||
if(rightDepth===-1){
|
||
return -1;
|
||
}
|
||
if(Math.abs(leftDepth-rightDepth)>1){
|
||
return -1;
|
||
}else{
|
||
return 1+Math.max(leftDepth,rightDepth);
|
||
}
|
||
}
|
||
return getDepth(root)===-1?false:true;
|
||
};
|
||
```
|
||
|
||
|
||
-----------------------
|
||
* 作者微信:[程序员Carl](https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw)
|
||
* B站视频:[代码随想录](https://space.bilibili.com/525438321)
|
||
* 知识星球:[代码随想录](https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ)
|
||
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码.jpg width=450> </img></div>
|