265 lines
7.8 KiB
Markdown
265 lines
7.8 KiB
Markdown
<p align="center">
|
||
<a href="https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ" target="_blank">
|
||
<img src="https://code-thinking-1253855093.file.myqcloud.com/pics/20210924105952.png" width="1000"/>
|
||
</a>
|
||
<p align="center"><strong><a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
|
||
# 动态规划:给你一些零钱,你要怎么凑?
|
||
|
||
## 518. 零钱兑换 II
|
||
|
||
[力扣题目链接](https://leetcode-cn.com/problems/coin-change-2/)
|
||
|
||
难度:中等
|
||
|
||
给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。
|
||
|
||
示例 1:
|
||
|
||
输入: amount = 5, coins = [1, 2, 5]
|
||
输出: 4
|
||
解释: 有四种方式可以凑成总金额:
|
||
5=5
|
||
5=2+2+1
|
||
5=2+1+1+1
|
||
5=1+1+1+1+1
|
||
|
||
示例 2:
|
||
输入: amount = 3, coins = [2]
|
||
输出: 0
|
||
解释: 只用面额2的硬币不能凑成总金额3。
|
||
|
||
示例 3:
|
||
输入: amount = 10, coins = [10]
|
||
输出: 1
|
||
|
||
注意,你可以假设:
|
||
|
||
* 0 <= amount (总金额) <= 5000
|
||
* 1 <= coin (硬币面额) <= 5000
|
||
* 硬币种类不超过 500 种
|
||
* 结果符合 32 位符号整数
|
||
|
||
|
||
## 思路
|
||
|
||
这是一道典型的背包问题,一看到钱币数量不限,就知道这是一个完全背包。
|
||
|
||
|
||
对完全背包还不了解的同学,可以看这篇:[动态规划:关于完全背包,你该了解这些!](https://programmercarl.com/背包问题理论基础完全背包.html)
|
||
|
||
但本题和纯完全背包不一样,**纯完全背包是能否凑成总金额,而本题是要求凑成总金额的个数!**
|
||
|
||
注意题目描述中是凑成总金额的硬币组合数,为什么强调是组合数呢?
|
||
|
||
例如示例一:
|
||
|
||
5 = 2 + 2 + 1
|
||
|
||
5 = 2 + 1 + 2
|
||
|
||
这是一种组合,都是 2 2 1。
|
||
|
||
如果问的是排列数,那么上面就是两种排列了。
|
||
|
||
**组合不强调元素之间的顺序,排列强调元素之间的顺序**。 其实这一点我们在讲解回溯算法专题的时候就讲过了哈。
|
||
|
||
那我为什么要介绍这些呢,因为这和下文讲解遍历顺序息息相关!
|
||
|
||
回归本题,动规五步曲来分析如下:
|
||
|
||
1. 确定dp数组以及下标的含义
|
||
|
||
dp[j]:凑成总金额j的货币组合数为dp[j]
|
||
|
||
2. 确定递推公式
|
||
|
||
dp[j] (考虑coins[i]的组合总和) 就是所有的dp[j - coins[i]](不考虑coins[i])相加。
|
||
|
||
所以递推公式:dp[j] += dp[j - coins[i]];
|
||
|
||
**这个递推公式大家应该不陌生了,我在讲解01背包题目的时候在这篇[动态规划:目标和!](https://programmercarl.com/0494.目标和.html)中就讲解了,求装满背包有几种方法,一般公式都是:dp[j] += dp[j - nums[i]];**
|
||
|
||
3. dp数组如何初始化
|
||
|
||
首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。
|
||
|
||
从dp[i]的含义上来讲就是,凑成总金额0的货币组合数为1。
|
||
|
||
下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j]
|
||
|
||
4. 确定遍历顺序
|
||
|
||
本题中我们是外层for循环遍历物品(钱币),内层for遍历背包(金钱总额),还是外层for遍历背包(金钱总额),内层for循环遍历物品(钱币)呢?
|
||
|
||
|
||
我在[动态规划:关于完全背包,你该了解这些!](https://programmercarl.com/背包问题理论基础完全背包.html)中讲解了完全背包的两个for循环的先后顺序都是可以的。
|
||
|
||
**但本题就不行了!**
|
||
|
||
因为纯完全背包求得是能否凑成总和,和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行!
|
||
|
||
而本题要求凑成总和的组合数,元素之间要求没有顺序。
|
||
|
||
所以纯完全背包是能凑成总和就行,不用管怎么凑的。
|
||
|
||
本题是求凑出来的方案个数,且每个方案个数是为组合数。
|
||
|
||
那么本题,两个for循环的先后顺序可就有说法了。
|
||
|
||
我们先来看 外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况。
|
||
|
||
代码如下:
|
||
|
||
```CPP
|
||
for (int i = 0; i < coins.size(); i++) { // 遍历物品
|
||
for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量
|
||
dp[j] += dp[j - coins[i]];
|
||
}
|
||
}
|
||
```
|
||
|
||
假设:coins[0] = 1,coins[1] = 5。
|
||
|
||
那么就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现{5, 1}的情况。
|
||
|
||
**所以这种遍历顺序中dp[j]里计算的是组合数!**
|
||
|
||
如果把两个for交换顺序,代码如下:
|
||
|
||
```
|
||
for (int j = 0; j <= amount; j++) { // 遍历背包容量
|
||
for (int i = 0; i < coins.size(); i++) { // 遍历物品
|
||
if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];
|
||
}
|
||
}
|
||
```
|
||
|
||
背包容量的每一个值,都是经过 1 和 5 的计算,包含了{1, 5} 和 {5, 1}两种情况。
|
||
|
||
**此时dp[j]里算出来的就是排列数!**
|
||
|
||
可能这里很多同学还不是很理解,**建议动手把这两种方案的dp数组数值变化打印出来,对比看一看!(实践出真知)**
|
||
|
||
5. 举例推导dp数组
|
||
|
||
输入: amount = 5, coins = [1, 2, 5] ,dp状态图如下:
|
||
|
||

|
||
|
||
最后红色框dp[amount]为最终结果。
|
||
|
||
以上分析完毕,C++代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
int change(int amount, vector<int>& coins) {
|
||
vector<int> dp(amount + 1, 0);
|
||
dp[0] = 1;
|
||
for (int i = 0; i < coins.size(); i++) { // 遍历物品
|
||
for (int j = coins[i]; j <= amount; j++) { // 遍历背包
|
||
dp[j] += dp[j - coins[i]];
|
||
}
|
||
}
|
||
return dp[amount];
|
||
}
|
||
};
|
||
```
|
||
是不是发现代码如此精简,哈哈
|
||
|
||
## 总结
|
||
|
||
本题的递推公式,其实我们在[动态规划:目标和!](https://programmercarl.com/0494.目标和.html)中就已经讲过了,**而难点在于遍历顺序!**
|
||
|
||
在求装满背包有几种方案的时候,认清遍历顺序是非常关键的。
|
||
|
||
**如果求组合数就是外层for循环遍历物品,内层for遍历背包**。
|
||
|
||
**如果求排列数就是外层for遍历背包,内层for循环遍历物品**。
|
||
|
||
可能说到排列数录友们已经有点懵了,后面Carl还会安排求排列数的题目,到时候在对比一下,大家就会发现神奇所在!
|
||
|
||
|
||
|
||
|
||
|
||
## 其他语言版本
|
||
|
||
|
||
Java:
|
||
```Java
|
||
class Solution {
|
||
public int change(int amount, int[] coins) {
|
||
//递推表达式
|
||
int[] dp = new int[amount + 1];
|
||
//初始化dp数组,表示金额为0时只有一种情况,也就是什么都不装
|
||
dp[0] = 1;
|
||
for (int i = 0; i < coins.length; i++) {
|
||
for (int j = coins[i]; j <= amount; j++) {
|
||
dp[j] += dp[j - coins[i]];
|
||
}
|
||
}
|
||
return dp[amount];
|
||
}
|
||
}
|
||
```
|
||
|
||
Python:
|
||
|
||
|
||
```python3
|
||
class Solution:
|
||
def change(self, amount: int, coins: List[int]) -> int:
|
||
dp = [0]*(amount + 1)
|
||
dp[0] = 1
|
||
# 遍历物品
|
||
for i in range(len(coins)):
|
||
# 遍历背包
|
||
for j in range(coins[i], amount + 1):
|
||
dp[j] += dp[j - coins[i]]
|
||
return dp[amount]
|
||
```
|
||
|
||
|
||
|
||
Go:
|
||
```go
|
||
func change(amount int, coins []int) int {
|
||
// 定义dp数组
|
||
dp := make([]int, amount+1)
|
||
// 初始化,0大小的背包, 当然是不装任何东西了, 就是1种方法
|
||
dp[0] = 1
|
||
// 遍历顺序
|
||
// 遍历物品
|
||
for i := 0 ;i < len(coins);i++ {
|
||
// 遍历背包
|
||
for j:= coins[i] ; j <= amount ;j++ {
|
||
// 推导公式
|
||
dp[j] += dp[j-coins[i]]
|
||
}
|
||
}
|
||
return dp[amount]
|
||
}
|
||
```
|
||
|
||
Javascript:
|
||
```javascript
|
||
const change = (amount, coins) => {
|
||
let dp = Array(amount + 1).fill(0);
|
||
dp[0] = 1;
|
||
|
||
for(let i =0; i < coins.length; i++) {
|
||
for(let j = coins[i]; j <= amount; j++) {
|
||
dp[j] += dp[j - coins[i]];
|
||
}
|
||
}
|
||
|
||
return dp[amount];
|
||
}
|
||
```
|
||
|
||
|
||
|
||
-----------------------
|
||
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>
|