2.5 KiB
2.5 KiB
思路
这道题目直接的想法可能是两层for循环再加上used数组表示使用过的元素。这样的的时间复杂度是O(n^2)。
方法一
其实这道题可以用很朴实的方法,时间复杂度就就是O(n)了,C++代码如下:
class Solution {
public:
vector<int> sortArrayByParityII(vector<int>& A) {
vector<int> even(A.size() / 2); // 初始化就确定数组大小,节省开销
vector<int> odd(A.size() / 2);
vector<int> result(A.size());
int evenIndex = 0;
int oddIndex = 0;
int resultIndex = 0;
// 把A数组放进偶数数组,和奇数数组
for (int i = 0; i < A.size(); i++) {
if (A[i] % 2 == 0) even[evenIndex++] = A[i];
else odd[oddIndex++] = A[i];
}
// 把偶数数组,奇数数组分别放进result数组中
for (int i = 0; i < evenIndex; i++) {
result[resultIndex++] = even[i];
result[resultIndex++] = odd[i];
}
return result;
}
};
时间复杂度:O(n) 空间复杂度:O(n)
方法二
以上代码我是建了两个辅助数组,而且A数组还相当于遍历了两次,用辅助数组的好处就是思路清晰,优化一下就是不用这两个辅助树,代码如下:
class Solution {
public:
vector<int> sortArrayByParityII(vector<int>& A) {
vector<int> result(A.size());
int evenIndex = 0; // 偶数下表
int oddIndex = 1; // 奇数下表
for (int i = 0; i < A.size(); i++) {
if (A[i] % 2 == 0) {
result[evenIndex] = A[i];
evenIndex += 2;
}
else {
result[oddIndex] = A[i];
oddIndex += 2;
}
}
return result;
}
};
时间复杂度O(n) 空间复杂度O(n)
方法三
当然还可以在原数组上修改,连result数组都不用了。
class Solution {
public:
vector<int> sortArrayByParityII(vector<int>& A) {
int oddIndex = 1;
for (int i = 0; i < A.size(); i += 2) {
if (A[i] % 2 == 1) { // 在偶数位遇到了奇数
while(A[oddIndex] % 2 != 0) oddIndex += 2; // 在奇数位找一个偶数
swap(A[i], A[oddIndex]); // 替换
}
}
return A;
}
};
时间复杂度:O(n) 空间复杂度:O(1)
这里时间复杂度并不是O(n^2),因为偶数位和奇数位都只操作一次,不是n/2 * n/2的关系,而是n/2 + n/2的关系!