303 lines
8.5 KiB
Markdown
303 lines
8.5 KiB
Markdown
<p align="center">
|
||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||
<img src="https://code-thinking-1253855093.file.myqcloud.com/pics/20210924105952.png" width="1000"/>
|
||
</a>
|
||
<p align="center"><strong><a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
|
||
|
||
## 718. 最长重复子数组
|
||
|
||
[力扣题目链接](https://leetcode-cn.com/problems/maximum-length-of-repeated-subarray/)
|
||
|
||
给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。
|
||
|
||
示例:
|
||
|
||
输入:
|
||
A: [1,2,3,2,1]
|
||
B: [3,2,1,4,7]
|
||
输出:3
|
||
解释:
|
||
长度最长的公共子数组是 [3, 2, 1] 。
|
||
|
||
提示:
|
||
|
||
* 1 <= len(A), len(B) <= 1000
|
||
* 0 <= A[i], B[i] < 100
|
||
|
||
|
||
## 思路
|
||
|
||
注意题目中说的子数组,其实就是连续子序列。这种问题动规最拿手,动规五部曲分析如下:
|
||
|
||
1. 确定dp数组(dp table)以及下标的含义
|
||
|
||
dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。
|
||
|
||
此时细心的同学应该发现,那dp[0][0]是什么含义呢?总不能是以下标-1为结尾的A数组吧。
|
||
|
||
其实dp[i][j]的定义也就决定着,我们在遍历dp[i][j]的时候i 和 j都要从1开始。
|
||
|
||
那有同学问了,我就定义dp[i][j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度。不行么?
|
||
|
||
行倒是行! 但实现起来就麻烦一点,大家看下面的dp数组状态图就明白了。
|
||
|
||
2. 确定递推公式
|
||
|
||
根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。
|
||
|
||
即当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;
|
||
|
||
根据递推公式可以看出,遍历i 和 j 要从1开始!
|
||
|
||
3. dp数组如何初始化
|
||
|
||
根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!
|
||
|
||
但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;
|
||
|
||
所以dp[i][0] 和dp[0][j]初始化为0。
|
||
|
||
举个例子A[0]如果和B[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。
|
||
|
||
|
||
4. 确定遍历顺序
|
||
|
||
外层for循环遍历A,内层for循环遍历B。
|
||
|
||
那又有同学问了,外层for循环遍历B,内层for循环遍历A。不行么?
|
||
|
||
也行,一样的,我这里就用外层for循环遍历A,内层for循环遍历B了。
|
||
|
||
同时题目要求长度最长的子数组的长度。所以在遍历的时候顺便把dp[i][j]的最大值记录下来。
|
||
|
||
代码如下:
|
||
|
||
```CPP
|
||
for (int i = 1; i <= A.size(); i++) {
|
||
for (int j = 1; j <= B.size(); j++) {
|
||
if (A[i - 1] == B[j - 1]) {
|
||
dp[i][j] = dp[i - 1][j - 1] + 1;
|
||
}
|
||
if (dp[i][j] > result) result = dp[i][j];
|
||
}
|
||
}
|
||
```
|
||
|
||
|
||
5. 举例推导dp数组
|
||
|
||
拿示例1中,A: [1,2,3,2,1],B: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:
|
||
|
||

|
||
|
||
以上五部曲分析完毕,C++代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
int findLength(vector<int>& A, vector<int>& B) {
|
||
vector<vector<int>> dp (A.size() + 1, vector<int>(B.size() + 1, 0));
|
||
int result = 0;
|
||
for (int i = 1; i <= A.size(); i++) {
|
||
for (int j = 1; j <= B.size(); j++) {
|
||
if (A[i - 1] == B[j - 1]) {
|
||
dp[i][j] = dp[i - 1][j - 1] + 1;
|
||
}
|
||
if (dp[i][j] > result) result = dp[i][j];
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
};
|
||
```
|
||
|
||
* 时间复杂度:$O(n × m)$,n 为A长度,m为B长度
|
||
* 空间复杂度:$O(n × m)$
|
||
|
||
## 滚动数组
|
||
|
||
在如下图中:
|
||
|
||

|
||
|
||
我们可以看出dp[i][j]都是由dp[i - 1][j - 1]推出。那么压缩为一维数组,也就是dp[j]都是由dp[j - 1]推出。
|
||
|
||
也就是相当于可以把上一层dp[i - 1][j]拷贝到下一层dp[i][j]来继续用。
|
||
|
||
**此时遍历B数组的时候,就要从后向前遍历,这样避免重复覆盖**。
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
int findLength(vector<int>& A, vector<int>& B) {
|
||
vector<int> dp(vector<int>(B.size() + 1, 0));
|
||
int result = 0;
|
||
for (int i = 1; i <= A.size(); i++) {
|
||
for (int j = B.size(); j > 0; j--) {
|
||
if (A[i - 1] == B[j - 1]) {
|
||
dp[j] = dp[j - 1] + 1;
|
||
} else dp[j] = 0; // 注意这里不相等的时候要有赋0的操作
|
||
if (dp[j] > result) result = dp[j];
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
};
|
||
```
|
||
|
||
* 时间复杂度:$O(n × m)$,n 为A长度,m为B长度
|
||
* 空间复杂度:$O(m)$
|
||
|
||
## 其他语言版本
|
||
|
||
|
||
Java:
|
||
```java
|
||
// 版本一
|
||
class Solution {
|
||
public int findLength(int[] nums1, int[] nums2) {
|
||
int result = 0;
|
||
int[][] dp = new int[nums1.length + 1][nums2.length + 1];
|
||
|
||
for (int i = 1; i < nums1.length + 1; i++) {
|
||
for (int j = 1; j < nums2.length + 1; j++) {
|
||
if (nums1[i - 1] == nums2[j - 1]) {
|
||
dp[i][j] = dp[i - 1][j - 1] + 1;
|
||
result = Math.max(result, dp[i][j]);
|
||
}
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
}
|
||
|
||
// 版本二: 滚动数组
|
||
class Solution {
|
||
public int findLength(int[] nums1, int[] nums2) {
|
||
int[] dp = new int[nums2.length + 1];
|
||
int result = 0;
|
||
|
||
for (int i = 1; i <= nums1.length; i++) {
|
||
for (int j = nums2.length; j > 0; j--) {
|
||
if (nums1[i - 1] == nums2[j - 1]) {
|
||
dp[j] = dp[j - 1] + 1;
|
||
} else {
|
||
dp[j] = 0;
|
||
}
|
||
result = Math.max(result, dp[j]);
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
}
|
||
```
|
||
|
||
Python:
|
||
|
||
> 动态规划:
|
||
```python
|
||
class Solution:
|
||
def findLength(self, A: List[int], B: List[int]) -> int:
|
||
dp = [[0] * (len(B)+1) for _ in range(len(A)+1)]
|
||
result = 0
|
||
for i in range(1, len(A)+1):
|
||
for j in range(1, len(B)+1):
|
||
if A[i-1] == B[j-1]:
|
||
dp[i][j] = dp[i-1][j-1] + 1
|
||
result = max(result, dp[i][j])
|
||
return result
|
||
```
|
||
|
||
> 动态规划:滚动数组
|
||
```python
|
||
class Solution:
|
||
def findLength(self, A: List[int], B: List[int]) -> int:
|
||
dp = [0] * (len(B) + 1)
|
||
result = 0
|
||
for i in range(1, len(A)+1):
|
||
for j in range(len(B), 0, -1):
|
||
if A[i-1] == B[j-1]:
|
||
dp[j] = dp[j-1] + 1
|
||
else:
|
||
dp[j] = 0 #注意这里不相等的时候要有赋0的操作
|
||
result = max(result, dp[j])
|
||
return result
|
||
```
|
||
|
||
|
||
Go:
|
||
```Go
|
||
func findLength(A []int, B []int) int {
|
||
m, n := len(A), len(B)
|
||
res := 0
|
||
dp := make([][]int, m+1)
|
||
for i := 0; i <= m; i++ {
|
||
dp[i] = make([]int, n+1)
|
||
}
|
||
|
||
for i := 1; i <= m; i++ {
|
||
for j := 1; j <= n; j++ {
|
||
if A[i-1] == B[j-1] {
|
||
dp[i][j] = dp[i-1][j-1] + 1
|
||
}
|
||
if dp[i][j] > res {
|
||
res = dp[i][j]
|
||
}
|
||
}
|
||
}
|
||
return res
|
||
}
|
||
```
|
||
|
||
JavaScript:
|
||
|
||
> 动态规划
|
||
|
||
```javascript
|
||
const findLength = (A, B) => {
|
||
// A、B数组的长度
|
||
const [m, n] = [A.length, B.length];
|
||
// dp数组初始化,都初始化为0
|
||
const dp = new Array(m + 1).fill(0).map(x => new Array(n + 1).fill(0));
|
||
// 初始化最大长度为0
|
||
let res = 0;
|
||
for (let i = 1; i <= m; i++) {
|
||
for (let j = 1; j <= n; j++) {
|
||
// 遇到A[i - 1] === B[j - 1],则更新dp数组
|
||
if (A[i - 1] === B[j - 1]) {
|
||
dp[i][j] = dp[i - 1][j - 1] + 1;
|
||
}
|
||
// 更新res
|
||
res = dp[i][j] > res ? dp[i][j] : res;
|
||
}
|
||
}
|
||
// 遍历完成,返回res
|
||
return res;
|
||
};
|
||
```
|
||
> 滚动数组
|
||
```javascript
|
||
const findLength = (nums1, nums2) => {
|
||
let len1 = nums1.length, len2 = nums2.length;
|
||
// dp[i][j]: 以nums1[i-1]、nums2[j-1]为结尾的最长公共子数组的长度
|
||
let dp = new Array(len2+1).fill(0);
|
||
let res = 0;
|
||
for (let i = 1; i <= len1; i++) {
|
||
for (let j = len2; j > 0; j--) {
|
||
if (nums1[i-1] === nums2[j-1]) {
|
||
dp[j] = dp[j-1] + 1;
|
||
} else {
|
||
dp[j] = 0;
|
||
}
|
||
res = Math.max(res, dp[j]);
|
||
}
|
||
}
|
||
return res;
|
||
}
|
||
```
|
||
|
||
|
||
-----------------------
|
||
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>
|