mirror of https://github.com/doocs/leetcode.git
7.3 KiB
7.3 KiB
| comments | difficulty | edit_url | tags | ||
|---|---|---|---|---|---|
| true | 中等 | https://github.com/doocs/leetcode/edit/main/solution/0100-0199/0120.Triangle/README.md |
|
120. 三角形最小路径和
题目描述
给定一个三角形 triangle ,找出自顶向下的最小路径和。
每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标 i 或 i + 1 。
示例 1:
输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]] 输出:11 解释:如下面简图所示: 2 3 4 6 5 7 4 1 8 3 自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
示例 2:
输入:triangle = [[-10]] 输出:-10
提示:
1 <= triangle.length <= 200triangle[0].length == 1triangle[i].length == triangle[i - 1].length + 1-104 <= triangle[i][j] <= 104
进阶:
- 你可以只使用
O(n)的额外空间(n为三角形的总行数)来解决这个问题吗?
解法
方法一:动态规划
我们定义 f[i][j] 表示从三角形底部走到位置 (i, j) 的最小路径和。这里的位置 (i, j) 指的是三角形中第 i 行第 j 列(均从 0 开始编号)的位置。那么我们有如下的状态转移方程:
f[i][j] = \min(f[i + 1][j], f[i + 1][j + 1]) + triangle[i][j]
答案即为 f[0][0]。
我们注意到,状态 f[i][j] 仅与状态 f[i + 1][j] 和状态 f[i + 1][j + 1] 有关,因此我们可以使用一维数组代替二维数组,将空间复杂度从 O(n^2) 降低至 O(n)。
时间复杂度 O(n^2),空间复杂度 O(n)。其中 n 是三角形的行数。
更进一步,我们还可以直接复用 triangle 作为 f 数组,这样就无需再额外创建 f 数组,空间复杂度降低至 O(1)。
Python3
class Solution:
def minimumTotal(self, triangle: List[List[int]]) -> int:
n = len(triangle)
f = [[0] * (n + 1) for _ in range(n + 1)]
for i in range(n - 1, -1, -1):
for j in range(i + 1):
f[i][j] = min(f[i + 1][j], f[i + 1][j + 1]) + triangle[i][j]
return f[0][0]
Java
class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int n = triangle.size();
int[] f = new int[n + 1];
for (int i = n - 1; i >= 0; --i) {
for (int j = 0; j <= i; ++j) {
f[j] = Math.min(f[j], f[j + 1]) + triangle.get(i).get(j);
}
}
return f[0];
}
}
C++
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
int n = triangle.size();
int f[n + 1];
memset(f, 0, sizeof(f));
for (int i = n - 1; ~i; --i) {
for (int j = 0; j <= i; ++j) {
f[j] = min(f[j], f[j + 1]) + triangle[i][j];
}
}
return f[0];
}
};
Go
func minimumTotal(triangle [][]int) int {
n := len(triangle)
f := make([]int, n+1)
for i := n - 1; i >= 0; i-- {
for j := 0; j <= i; j++ {
f[j] = min(f[j], f[j+1]) + triangle[i][j]
}
}
return f[0]
}
TypeScript
function minimumTotal(triangle: number[][]): number {
const n = triangle.length;
const f: number[] = Array(n + 1).fill(0);
for (let i = n - 1; ~i; --i) {
for (let j = 0; j <= i; ++j) {
f[j] = Math.min(f[j], f[j + 1]) + triangle[i][j];
}
}
return f[0];
}
Rust
impl Solution {
pub fn minimum_total(triangle: Vec<Vec<i32>>) -> i32 {
let n = triangle.len();
let mut f = vec![0; n + 1];
for i in (0..n).rev() {
for j in 0..=i {
f[j] = f[j].min(f[j + 1]) + triangle[i][j];
}
}
f[0]
}
}
方法二
Python3
class Solution:
def minimumTotal(self, triangle: List[List[int]]) -> int:
n = len(triangle)
f = [0] * (n + 1)
for i in range(n - 1, -1, -1):
for j in range(i + 1):
f[j] = min(f[j], f[j + 1]) + triangle[i][j]
return f[0]
Java
class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
for (int i = triangle.size() - 2; i >= 0; --i) {
for (int j = 0; j <= i; ++j) {
int x = triangle.get(i).get(j);
int y = Math.min(triangle.get(i + 1).get(j), triangle.get(i + 1).get(j + 1));
triangle.get(i).set(j, x + y);
}
}
return triangle.get(0).get(0);
}
}
C++
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
for (int i = triangle.size() - 2; ~i; --i) {
for (int j = 0; j <= i; ++j) {
triangle[i][j] += min(triangle[i + 1][j], triangle[i + 1][j + 1]);
}
}
return triangle[0][0];
}
};
Go
func minimumTotal(triangle [][]int) int {
for i := len(triangle) - 2; i >= 0; i-- {
for j := 0; j <= i; j++ {
triangle[i][j] += min(triangle[i+1][j], triangle[i+1][j+1])
}
}
return triangle[0][0]
}
TypeScript
function minimumTotal(triangle: number[][]): number {
for (let i = triangle.length - 2; ~i; --i) {
for (let j = 0; j <= i; ++j) {
triangle[i][j] += Math.min(triangle[i + 1][j], triangle[i + 1][j + 1]);
}
}
return triangle[0][0];
}
Rust
impl Solution {
pub fn minimum_total(triangle: Vec<Vec<i32>>) -> i32 {
let mut triangle = triangle;
for i in (0..triangle.len() - 1).rev() {
for j in 0..=i {
triangle[i][j] += triangle[i + 1][j].min(triangle[i + 1][j + 1]);
}
}
triangle[0][0]
}
}
方法三
Python3
class Solution:
def minimumTotal(self, triangle: List[List[int]]) -> int:
n = len(triangle)
for i in range(n - 2, -1, -1):
for j in range(i + 1):
triangle[i][j] = (
min(triangle[i + 1][j], triangle[i + 1][j + 1]) + triangle[i][j]
)
return triangle[0][0]