mirror of https://github.com/doocs/leetcode.git
|
…
|
||
|---|---|---|
| .. | ||
| README.md | ||
| README_EN.md | ||
| Solution.cpp | ||
| Solution.go | ||
| Solution.java | ||
| Solution.js | ||
| Solution.py | ||
| Solution.rs | ||
README_EN.md
| comments | difficulty | edit_url | tags | ||||
|---|---|---|---|---|---|---|---|
| true | Easy | https://github.com/doocs/leetcode/edit/main/solution/0500-0599/0561.Array%20Partition/README_EN.md |
|
561. Array Partition
Description
Given an integer array nums of 2n integers, group these integers into n pairs (a1, b1), (a2, b2), ..., (an, bn) such that the sum of min(ai, bi) for all i is maximized. Return the maximized sum.
Example 1:
Input: nums = [1,4,3,2] Output: 4 Explanation: All possible pairings (ignoring the ordering of elements) are: 1. (1, 4), (2, 3) -> min(1, 4) + min(2, 3) = 1 + 2 = 3 2. (1, 3), (2, 4) -> min(1, 3) + min(2, 4) = 1 + 2 = 3 3. (1, 2), (3, 4) -> min(1, 2) + min(3, 4) = 1 + 3 = 4 So the maximum possible sum is 4.
Example 2:
Input: nums = [6,2,6,5,1,2] Output: 9 Explanation: The optimal pairing is (2, 1), (2, 5), (6, 6). min(2, 1) + min(2, 5) + min(6, 6) = 1 + 2 + 6 = 9.
Constraints:
1 <= n <= 104nums.length == 2 * n-104 <= nums[i] <= 104
Solutions
Solution 1: Sorting
For a pair of numbers (a, b), we can assume a \leq b, then \min(a, b) = a. In order to make the sum as large as possible, the b we choose should be as close to a as possible, so as to retain a larger number.
Therefore, we can sort the array nums, then divide every two adjacent numbers into a group, and add the first number of each group.
The time complexity is O(n \times \log n), and the space complexity is O(\log n). Where n is the length of the array nums.
Python3
class Solution:
def arrayPairSum(self, nums: List[int]) -> int:
nums.sort()
return sum(nums[::2])
Java
class Solution {
public int arrayPairSum(int[] nums) {
Arrays.sort(nums);
int ans = 0;
for (int i = 0; i < nums.length; i += 2) {
ans += nums[i];
}
return ans;
}
}
C++
class Solution {
public:
int arrayPairSum(vector<int>& nums) {
sort(nums.begin(), nums.end());
int ans = 0;
for (int i = 0; i < nums.size(); i += 2) {
ans += nums[i];
}
return ans;
}
};
Go
func arrayPairSum(nums []int) (ans int) {
sort.Ints(nums)
for i := 0; i < len(nums); i += 2 {
ans += nums[i]
}
return
}
Rust
impl Solution {
pub fn array_pair_sum(mut nums: Vec<i32>) -> i32 {
nums.sort();
nums.iter().step_by(2).sum()
}
}
JavaScript
/**
* @param {number[]} nums
* @return {number}
*/
var arrayPairSum = function (nums) {
nums.sort((a, b) => a - b);
return nums.reduce((acc, cur, i) => (i % 2 === 0 ? acc + cur : acc), 0);
};